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This book provides cutting edge research into railway vehicle dynamics and
the condition monitoring of railway vehicles and track.

Using real world global examples, the book focuses on safety and
maintenance from a global perspective. Beginning with an explanation of
the practical theory behind dynamics and running safety when passing a
curve, the book enables readers to understand the motion and vibration of
railway vehicles both in theory and in practice. Presenting examples of real-
world phenomena, and a central chapter explaining condition monitoring
and Condition-Based Maintenance (CBM), the book demonstrates the
mechanisms involved in railway vehicle design and production. It also
focuses on safety and riding comfort.

Including case studies, the book will be of interest to railway engineers,
and those interested in design, dynamics, condition monitoring and
maintenance engineering.
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Preface

This book provides a systematic and easy-to-understand explanation of
railway system dynamics, focusing on vehicle dynamics and vibration, as
well as related condition monitoring. This will be very useful for beginners
who are just starting to learn, but also for engineers already involved in the
field.

Chapters 1 and 2 provide a detailed explanation of the basics of railway
vehicles, allowing the reader to understand how railway vehicles are
modelled using elements such as mass, springs and dampers. In addition,
the characteristics of wheel-rail systems, including passing through curves,
and bogie dynamics are explained in detail. Chapter 3 introduces examples
of safety analysis using Multi Body Dynamics (MBD) simulation, such as
flange-climb derailment and vehicle overturning.

Chapter 4 introduces the basic concepts of condition monitoring in
railways, the methods used for condition monitoring, and application
examples. In Chapter 5, we introduce actual examples of the measurement
of wheel/rail contact forces, such as derailment coefficients, using in-
service trains, and how the results of these measurements are used. We also
introduce various methods for estimating track irregularities from measured
data by measuring vibrations in the cabin of in-service trains. In addition,
we introduce a case study of the development of a method for estimating
the adhesion force between wheels and rails in the UK.

This book is characterised by the fact that it does not simply list
textbook-style theories, but instead introduces many real-life examples
experienced by the authors. This book focuses on examples from Japan that
have rarely been introduced before.

It 1s likely that condition monitoring on the railway will continue to
evolve in the future, but in order to carry out effective condition monitoring,
it is essential to have a thorough understanding of the dynamics of railway



vehicles. This book has been written with this aim in mind, and we hope

that it will be widely read by students, researchers and engineers involved
in practical work.

Hitoshi Tsunashima

Akira Matsumoto

Yohei Michitsuji

Peter Hubbard

Christopher Ward

March 2025
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1 Fundamentals of Railway Vehicles and
Tracks

DOI: 10.1201/9781003362135-1

1.1 RAILWAY VEHICLES

Railway vehicles are classified as, for example, passenger coaches, freight
wagons, diesel locomotives, electric locomotives, diesel multiple units,
electric multiple units and so forth. Although the structure of each type of
vehicle differs depending on its intended use, there are many similarities in
the concept of traction and guidance equipment to ensure safe running. This
section describes the basic structure of the most common types of railway
vehicles; a vehicle with a pair of bogies with two wheelsets on each.

1.1.1 COORDINATE SYSTEM FOR RAILWAY VEHICLES

When analysing the dynamics of railway vehicles, the wheelsets, bogie
frames and a car body that make up the system are often treated as rigid
bodies. The Degrees Of Freedom (DOFs) for each rigid body are
translational motion along the three axes and rotational motion about the
three axes for a total of six DOFs, as shown in Figure 1.1.
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FIGURE 1.1 Coordinate system for a railway vehicle.<!

1.1.2 BASIC STRUCTURE OF A RAILWAY VEHICLE

Figure 1.2 shows the basic structure of a typical railway vehicle with the
names and dimensions of each part. The dimensions in the figure are those
of a typical conventional railway vehicle and those in parentheses are those
of a Shinkansen train. The main dimensions of the bogies are shown in
Figure 1.3. In Japan, most bogies have a wheel diameter of 860mm and the
longitudinal distance between the wheelsets in a bogie is about 2m.
Normally, trains are operated with multiple cars connected via couplers, but
the vertical and lateral restraints of the car body by the couplers are
generally weak, so a single car model 1s often used for dynamic analysis of
a railway vehicle. However, for a Shinkansen train with yaw dampers
between the cars, as shown in Figure 1.4(a), or an articulated vehicle with
bogies between cars as shown in Figure 1.4(b), a multi-car model should be
used. An articulated vehicle or an articulated vehicle with bogies between
the car bodies 1s modelled as a three- or five-car articulated vehicle.



Distance between connecting surfaces 20 m (25 m)

Car body length19.5 m(24.5 m)

Secondary suspension

Car body weight 20 ton (30 ton)

Bogie weight 5 ton (6.5 ton)

Car body width

<

3.0m(3.4m)

2.6m
(2.6 m)

\ . Bogie frame Lembmeo
L) ’ ‘ ~
Prlmar.y Wheelset {’ : H
suspension ([¢ (p (9] o :
e = Axle box f——
Wheel base Distance between bogies Gauge
2.0m(2.5m) 13.8 m(17.5 m) 1067 mm (1435 mm)

% Figuresin () refer to Shinkansen train

FIGURE 1.2 Basic configuration and main dimensions of a two-axle bogie
railway vehicle.d
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FIGURE 1.3 Definitions of bogie dimensions.<]
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FIGURE 1.4 Example of multiple car body model.<1

1.1.3 BOGIE FUNCTION AND STRUCTURE
1.1.3.1 Role of the Bogie

The railway bogie is crucial for the dynamics of railway vehicles. The bogie
of a railway vehicle plays the following four roles:

1. Car body load support

2. Prevention of car body vibration

3. Turning and steering in curves

4. Traction and braking longitudinal force transmission.

The weight of a two-bogie vehicle is supported by four wheelsets. A
bolsterless bogie structure is currently in widespread use, as shown in
Figure 1.5. The vertical load of the car body is transmitted to the bogie
frame, primary spring and wheelset via the secondary suspension, and is
supported by the rails directly under each wheel. The same elements also
contribute to decreased vibration in the car body. For example, wheelset
vibrations generated by the rails with track irregularities are reduced from
being transmitted to the car body by the damping action of the primary
spring and secondary air spring. To damp vibrations, damping elements



such as lateral dampers and vertical dampers are often installed in parallel
with the springs. When designing a bogie from the perspective of vibration
prevention, the bogie and car body are treated as a mass-spring-damper
system and their vibration isolation performance is evaluated. In this case,
the part below the primary spring, such as the wheel axle, is called the
unsprung mass, and the part between the primary spring and secondary
spring, such as the bogie frame, is called the intersprung mass. The car
body suspension and axlebox suspension are crucial for turning and steering
in curves and transmission of longitudinal forces. Traction and braking are
also important dynamics of a railway vehicle. In the modelling of the
longitudinal force transmission, the effect of the vertical and lateral
dynamics of a railway vehicle is sometimes omitted.

4 )

Car body

Lateral damper

Qir SPIring |Traction devijy
N oo SESSN/ASTSTRN f
Bogie frame LE /J/—| = - Car body suspensions
Vertical damper 8= ....... 2= — Axlebox suspension
Primary sprin / Axlebox
e Wheelset

FIGURE 1.5 Basic structure of a railway vehicle (example of bolsterless
bogies).<!

1.1.3.1.1 Bogie with Bolsters



For a bogie supporting a long car body to turn in a curve, it is necessary to
allow a large angle between the bogie and the car body. This relative yaw
angle between the bogie and the car body is shown in Figure 1.6. For this
reason, a bolster is placed between the bogie frame and the car body, and
bogies with a structure that turns between the bogie frame and bolster or
between the bolster and car body around the centre pivot have been widely
used. The former is called a direct-mount bogie because the car body is
placed directly above the secondary spring, while the latter is called an
indirect-mount bogie because the secondary spring is placed above the
bolster and the car body is placed on top of it. The actual structure of a
direct-mount bogie is shown in Figure 1.7. A schematic diagram is shown
in Figure 1.8(a), and a schematic diagram of the structure of an indirect-
mount bogie is shown in Figure 1.8(b). In both systems, the bogie can turn
at a large angle by turning around the centre plate when passing through a
curve, but the secondary spring is not deformed back and forth. To prevent
hunting at high speeds, sliding parts such as side bearers are installed to
provide turning resistance between the car body and bogie using friction.

Car body Angle between car
- body and bogie

Running direction

FIGURE 1.6 Bogie angle when passing through a curve.d



FIGURE 1.7 Bogie with bolsters (direct-mount type).<J
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FIGURE 1.8 Schematic diagram of the body support system of a bogie with
bolsters.<l

Wheelset hunting motion refers to the unstable self-induced vibration
inherent to railway vehicles, and it is described in detail in Chapter 2. In
this type of bogie, the longitudinal force between the bogie and the car body
during traction and braking is transmitted by a bolster anchor installed in
the secondary spring section. The bolster anchors are made of steel with
rubber bushings inserted at both ends. They are connected longitudinally
between the car body and bolster in a direct-mount bogie, and between the
bolster and bogie frame in an indirect-mount bogie. When the side bearings
do not slide due to static friction or when the yaw angle is small, such as
during straight running, the rubber bushings of the bolster anchors function
as restoring springs between the car body and the bogie. The traction rod is
installed as close as possible to the axle centre height to avoid inducing
bending vibration of the car body.

Air springs (pneumatic suspension) with a height adjustment device are
widely used as secondary springs. Air springs not only gently support the
car body but also provide a damping force against vertical vibration by
means of an orifice between the air spring and the surge reservoir, as shown
in Figure 1.9. A diaphragm-type air spring functions as a spring not only in



the vertical direction but also in the longitudinal and lateral directions.
However, because air springs generate little damping force for vibrations
other than those in the vertical direction, oil dampers are installed in
parallel. If the rigidity of the vehicle body against roll is insufficient, a
torsion spring type anti-roll bar may be added.

' Car body
Leveling valve (LV)
LV lever % ( ) (Intake)
LV rod \ = Resei'voir = — — |(Exhaust)
N\ 1 ; 1
Air spring ) ( )
1l : 11l
=l E 11 .
Orifice — | Air chamber I-: A~ Bogie frame

/

Differential pressure valve

FIGURE 1.9 Configuration of air spring system.<l

To prevent excessive displacement of the secondary spring section, a
lateral bump stop is installed between the car body and the bogie. When the
relative lateral displacement of the two exceeds a pre-determined distance,
the car body-end strikes the stopper rubber attached to the bogie side. In the
vertical direction, and the cushioning rubber in the air spring functions as a
bump stop. In bogies with bolsters, a steel liftstop is attached to the air
spring to prevent the car body from rising past a predetermined limit due to
excessive extension of the air spring. In addition, bogies with bolsters also
include swing hanger bogies that use coil springs or bellows air springs as
sleeper springs to cushion vertical movement and swing sleepers to provide
restoring force for lateral movement of the car body.

1.1.3.1.2 Bolsterless Bogie



In recent years, bolsterless bogies, which are lighter in weight due to the
elimination of the bolster, have entered the mainstream for passenger car
bogies. Figure 1.10 shows the structure of a bolsterless bogie. When
passing through a curve, the bogie rotates around the centre pin, and the air
spring deflects largely in the lateral and longitudinal directions when the
bogie angle is generated. The development of air springs capable of such a
large displacement made the bolsterless bogie a practical reality.

Centre pin
Traction link
Lateral damper
Air spring
Gear box

Axle

Wheel
Axlebox

9 Bogie frame
10 Yaw damper
11 Primary spring
12 Vertical damper
13 Main motor

eI B e R I L

FIGURE 1.10 Example of bolsterless bogie.<

Because the bolsterless bogie eliminates friction elements such as the
bolster anchors and side supports, a yaw damper that generates a damping
force to suppress hunting behaviour is especially required in high-speed
vehicles. The yaw damper is an oil damper that generates a large damping
force with a small stroke, and it is usually installed on both sides of the



bogie to couple the car body and bogie frame in the longitudinal direction.
When the bogie generates a change in yaw angle at a low rate, such as when
the vehicle enters a circular curve from a straight track through a transition
curve, the yaw damper generates little damping force because the force is
proportional to yaw rate. Like the bolster anchor, the yaw damper is
installed as close as possible to the axle centre height of the wheelset to
avoid inducing bending vibration of the vehicle body.

The longitudinal force is transmitted from the bogie frame to the car
body by a traction device located at the centre of the bogie so as not to
interfere with the turning motion of the bogie. There are various types of
traction devices, including the single-link type, Z-link type, gantry-type and
plate spring type. Many bolsterless bogies use a traction device to stop
abnormal lift due to the large displacement of the air springs. For example,
a bogie with a single-link type traction device has a structure in which the
rod of the link hits the bogie frame when the air spring extends, and the car
body rises above an allowable limit.

1.1.3.2 Axle-Supporting Device

The axle-supporting system connects the wheelset axlebox, which contains
bearings, to the bogie frame. This in turn supports the vertical load and
holds the two pairs of axleboxes parallel and at the appropriate position in
relation to the bogie frame. They also provide adequate elasticity vertically,
but also longitudinally and laterally to prevent wheelset hunting motion. If
the axlebox longitudinal and lateral stiffness is too large, the turning
performance will deteriorate, while too small a rigidity will cause an
unstable hunting motion. In many cases, a model with springs and dampers
in the longitudinal, lateral and vertical directions between the axlebox
position and the bogie frame is used in vehicle motion analysis. Specific
structural types include the pedestal guides, cylindrical guides (Schlieren),
trailing arms, leaf springs, beam links, mono-links, and laminated rubbers.
Recently, however, the upper and lower loads are supported by a coil spring
and the longitudinal and lateral supports are supported by rubber bushings.
In addition, link-type bogies and axle beam-type bogies, in which the



vertical load is supported by coil springs and rubber bushings are used for
longitudinal and lateral support to eliminate the free space between the
bogie frame and axlebox, are increasingly used. Some bogies are also fitted
with an oil damper in parallel with the primary spring to dampen vertical
body vibration. Examples of various axle supporting devices are shown in
Figure 1.11. For more detailed information regarding the railway vehicle
structure, please refer to other sources [1, 2].
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FIGURE 1.11 Examples of various axle support systems.<l

1.1.3.3 Wheels and Wheelsets

The characteristic feature of a railway vehicle is the wheelset, which is
assembled by press fitting steel wheels onto an axle. The part of the wheel
that comes into contact with the rail surface is called the wheel tread, which
has an inclination known as conicity. Figure 1.12 shows the key part of a
wheel profile. When the wheelset is displaced laterally from the track
centre, the rolling radius at the wheel-rail contact point changes for the left
and right wheels due to the profile gradient. When the left and right wheels
rotate at the same speed, the so-called self-steering ability of a wheelset
occurs. On curves, the vehicle travels along the track using this self-steering
ability. To prevent derailment, flanges are provided on the inner surface of
the wheels to assist the turning of the bogie on sharp curves where the
difference in wheel radii between the left and right wheels is not enough to
turn the bogie.

Wheel centre Tread plange Ri
: m

Diameter I
of wheel [] ]

Boss |

Flange height \J Bl s P;}  Back-to-back gauge ’}J

< »
<

Rim width
FIGURE 1.12 Definitions of each part of the wheelset.<!

Wheels widely used in Japan have a rim width of 125mm, and the tread
centre 1s 65mm from the wheel. The back-to-back gauge is 990mm for
narrow-gauge conventional trains and 1360mm for Shinkansen trains, with
a flange height of 27-30mm and a flange angle of 65—70°. The tread of the
wheel used to have a constant gradient of 1/20 for conventional lines and



1/40 for Shinkansen lines, but currently, wheels with an arc profile are used
to achieve both running stability and turning performance. The wheel tread
profile and wheel-rail contact are explained in Section 2.1.

1.2 TRACKS

Railway vehicles are guided by the track, which supports and guides the
train, ensuring smooth operation. This section provides essential
information about railroad tracks, focusing on their geometry, which is
crucial for analysing the dynamics of rolling stock.

1.2.1 TRACK STRUCTURE

As shown in Figure 1.13, the track is a structure consisting of rails, sleepers
and track beds, which distribute and transmit the train load to the track bed
and the structures below. The track bed ballast plays an important role in
softening the dynamic train loads transmitted from the sleepers and
distributing them widely to the track bed. In Japan, the two rails on each
side are fastened to the sleeper with a 1/40 inclination, known as the tie-
plate angle. Hard rubber pads called track pads are inserted between the
rails and the sleeper and between the tie plate and the sleeper. Track with
sleepers laid on ballast track beds is the most common type of track, but in
recent years, slab track and track directly connected to elastic sleepers,
which are designed to reduce maintenance labour, have been increasingly
laid. The distance between the left and right rails is the most basic design
criterion for railways and is called the gauge. Gauge i1s defined as the
shortest distance between the inner surfaces of the left and right rails within
a specified distance below the rails (often 14—16mm). As the typical gauges
used in Japanese railways, JR conventional lines use narrow gauge
(1067mm) and Shinkansen lines use standard gauge (1435mm).



Rail fastening Rail

Tie-plate angle Gauge R /
| Tie-plate (Rail chair) Slecper R
CEEEE e Ballast D
Track bed

FIGURE 1.13 General track structure.<]

1.2.2 PARAMETERS OF TRACK

1.2.2.1 Curve Radius

When laying a curved track, a circular curve is generally used, and the
degree of curvature is expressed by the radius R (in metres) of the curve at
the centre of the track, such as R600. The smaller the curve radius, the more
difficult it is to run at high speeds and the greater the risk of derailment.
According to Japanese national standards, the minimum curve radius is
160m for conventional trains, and curves with radius smaller than this are
permitted, taking into account the running performance of the train and
safety equipment such as check rails. Shinkansen trains require larger curve
radii to facilitate high-speed running, with the minimum curve radius set at
2500m for the Tokaido Shinkansen and 4000m for the Sanyo Shinkansen
and subsequent lines.

1.2.2.2 Cant

When a train passes through a curve, centrifugal forces act on the vehicle,
and the higher the speed, the more the vehicle tends to overturn. Therefore,
to counteract this centrifugal force with the gravitational component, the
outer rails (hereafter referred to as the ‘high rail’) are raised in relation to
the inner rails (hereafter referred to as the ‘low rail’) on a curve on the main



line. This height difference between the high and low rails is called a cant,
as shown in Figure 1.14. The maximum amount of cant is limited by the
need to ensure that vehicles are sufficiently safe from overturning when
stopped on curves and to prevent passengers from experiencing discomfort.
The maximum cant is 105mm on narrow-gauge conventional lines with a
gauge of 1067mm, 140mm on standard-gauge conventional lines with a
gauge of 1435mm, 160mm on some private railways and 200mm on
Shinkansen lines in Japan.
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FIGURE 1.14 Cant of a curve.d

On conventional lines, the low rail is kept at the same height as the
straight section, while the high rail is adjusted so that the value reaches the
specified cant at a circular curve, as shown in Figure 1.15(a). A transition
curve inserted between a straight line and a curve has a gradient as a
vertical alignment, and the track centre gradually rises on the entrance
transition curve and gradually falls on the exit transition curve. In contrast,



for the Shinkansen lines, the low rail is lowered, and the high rail is raised
without changing the height of the track centre, as shown in Figure 1.15(b),
so there 1s no gradient in the track centre in the transition curve.
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FIGURE 1.15 How the cant is set.<]

1.2.2.3 Transition Curve

When a track is constructed with a combination of straight sections and
constant radius curves, vehicles passing through these transitions would
experience a sudden increase in centrifugal force, leading to a significant
deterioration in both operational safety and ride comfort. To prevent this, a
transition curve is usually inserted between a straight line and a curve.
Japanese railways employ cubic parabolic transition curves for
conventional lines and half-wavelength sine wave transition curves for
Shinkansen lines. The half-wavelength sine shape is advantageous in
decreasing vehicle roll motion at high speeds, because the cant gradient
varies continuously at both ends of the transition curve. Conversely, for the
same transition curve length, the steepest cant gradient in the centre of the
curve is larger than that of a linearly changed transition curve. Therefore,
the half-wavelength sine wave transition curve is mainly used on
Shinkansen lines.

1.2.2.4 Slack



In curves and turnouts with small radii, the gauge is widened to facilitate
smooth running of wheelsets. This is called ‘slack’, and it is achieved along
the entire length of a curve by widening the inner gauge with respect to the
outer gauge, as shown in Figure 1.16. Currently, the primary purpose of
introducing slack is to enable the wheelset to utilise its self-steering
capability by creating a differential in the wheel radius between the high
and low rail wheels. In practical applications, the amount of slack in a
narrow-gauge conventional line is 15mm on an R200m curve, 10mm on an
R300m curve, and Smm on an R400m curve.
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FIGURE 1.16 How slack 1s added to a curve.&l

1.2.3 TRACK IRREGULARITIES

The shape of the rail, which is the surface on which the vehicles run,
gradually changes due to the effects of repeated train traffic and natural
phenomena. This is called track irregularity. The track bed ballast is
gradually plastically deformed by the repeated dynamic train loads
transmitted from the sleepers. This results in residual displacement of the
sleepers and rails supported by the track bed. Other types of track
irregularity are caused by deformations of the track and structures due to
natural phenomena such as rainfall and earthquakes. Track irregularities



hinder the smooth running of trains, degrade ride comfort due to vehicle
sway, increase lateral force and increase the derailment risk due to a
decrease in the wheel load. In addition, the track materials deteriorate due
to the significant wheel load and lateral force, so it is important to inspect
the track regularly to identify any issues and conduct track maintenance
work. Types of track irregularities, including vertical alignment, lateral
alignment, cross level, twist, gauge are shown in Figure 1.17. Cant is also
monitored in the UK.

Vertical level Lateral alignment Twist

Cross level Gauge

FIGURE 1.17 Types of track irregularities.<J

Vertical irregularity is the vertical irregularity of the rail head surface. In
a track on a track bed, it is mainly caused by the settlement of the track bed
ballast. Generally, a 10-meter string is stretched across the top of the rail
head and the vertical distance between the rail and the displacement at the
centre of the string is measured. Vertical irregularities are associated with
the vertical movement of the car body and increase as the variation in wheel
load increases.

Lateral alignment refers to the lateral displacement of the rail. Similar to
vertical irregularity, it is commonly expressed as 10-meter chord versine
values. Lateral alignment contributes to increased lateral forces and train
movement in the lateral direction.



Cross level irregularity refers to the height difference between the left
and right rails over a given gauge length (for example, 1067mm for narrow-
gauge lines).

Gauge irregularity includes changes such as widening or narrowing.
Widening of the gauge may lead to derailment within the gauge, while
narrowing of the gauge may lead to derailment due to increased lateral
forces. On sharp curves and turnouts, slack is set to ensure smooth running
of the vehicle, and the gauge is managed in consideration of this slack.

Twist refers to the change in level over a fixed distance and describes the
twist of the track with respect to the plane of the track. Rail vehicles
generally have multiple wheelsets fixed to the bogie, and a large twist in the
plane can easily decrease the wheel load, so this is an important track
irregularity management item from the viewpoint of running safety.

Other irregularities include a combination of alignment and cross level
irregularities, which are considered in measures aimed at preventing
multiple-factor derailments of freight wagons. For each of these items, track
maintenance standards and acceptable standards are set by the railway
operator. Track irregularities are inspected by static manual inspection as
well as dynamic inspection by track inspection vehicles, which are
controlled to the nearest millimetre.
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2.1 CONTACT FORCE BETWEEN THE WHEEL AND RAIL

The dynamics of a rail vehicle, especially the lateral and yaw motion, is
strongly influenced by the creep force acting on the contact patch between
the wheels and the rail. This creep force is a tangential force resulting from
the slip (creep) between the rolling wheel and the rail, and its magnitude is
dependent on the creep ratio.

Figure 2.1 illustrates the creep forces acting in the contact patch. In
addition to the normal force, the contact patch is subject to a combined
longitudinal and lateral creep force caused by the lateral, longitudinal creep
and a spin moment around the normal axis of the contact patch [1, 2]. The
creep force model, based on the book Three-Dimensional Elastic Bodies in
Rolling Contact [3] and its related manual [4], is widely used in vehicle
dynamics analysis.
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FIGURE 2.1 Creep forces acting on the contact patch between the wheel and
rail.<l

Figure 2.2 illustrates the relationship between creep ratio and creep
force. The contact patch is elastically deformed [5] in the longitudinal
direction and the axis of spin moves forward from the centre of the contact
patch, resulting in mutual influence between lateral creep and spin creep. In
the range where the creep ratio is small, the creep force increases almost in
proportion to the creep ratio. This range is particularly called the linear
creep range, and linear creep forces are used when conducting vehicle
running stability analysis.



/Linear creep force

"/ . * .
g Adhesion limit
'
I
3
E Columb’s friction
53
5 Smal —>te— Large sl
= slip gt Sip
Q\ Slip area
D q O Adhesion area
0 Creep ratio

FIGURE 2.2 Creep ratio and creep force between the wheel and rail.<J

The linear creep force is calculated by the following equation:

Longitudinal creep force: fi=—knn1

Lateral creep force: fo = —Kooly — Kagws p,

Spin moment: M3 = KosVy — K33Ws3
(2.1)

where ki1, k2,k2, and k33 are linear creep coefficients of Kalker and
v1, 2, andws are the longitudinal, lateral and spin creep ratios, respectively.
The spin moment  M; is sufficiently small compared to the moment
due to the creep force acting on the wheelset, and it is often ignored when
analysing vehicle dynamics [6]. The spin term of the lateral creep force



—kosws 18 also considered in the analysis of a flange climb derailment
where the flange contacts the rail and the spin becomes large, but it is often
ignored in other normal straight and curved section analyses because it is
sufficiently small compared to the term due to lateral creep  —kavs. In
other words, the following Equation (2.2) is used in most cases for vehicle
motion analysis:

Longitudinal creep force: fi; = —k1111
Lateral creep force: fo = —Kovy |’

(2.2)

where 11,k are linear creep coefficients and v;,v, are longitudinal and
lateral creep ratios.

2.2 DYNAMICS OF A WHEELSET

This section deals with the fundamental dynamics of a wheelset based on
linearised equations of motion. Even within the framework of a simplified
linear model, it is possible to capture the key characteristics of the wheelset,
such as its hunting behaviour and self-steering properties.

2.2.1 EQUATIONS OF MOTION FOR A WHEELSET

To analyse the motion of a wheelset, a wheel with a conical tread, as
depicted in Figure 2.3, is employed for simplicity, enabling the derivation
of the linearised equations of motion. In this figure, both lateral and yaw
displacements are also defined. The wheel-rail contact angle is assumed to
be small, and it is further considered that the spin moment is negligible
compared to the moment due to the longitudinal creep force. The tread
gradient (conicity) of the wheel is denoted as », and the wheel radius
linearly changes with lateral displacement. The distance from the axle
centre to the contact point of the left and right wheels is denoted as b, if the



respective changes are assumed to be small. Under these assumptions, the
creep ratios for the left and right wheels are as follows:
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FIGURE 2.3 Parameters for the wheelset.<l

Left wheel:
V1L = _lyw - ﬁ@bw
Pt T (23)
VoL, = _’(pw + yTW
Right wheel:
Y by i
ViR = —-Yw + — Yw
1R o Y v (7 (2.4)

Vor = —Pw + LF

When the creep forces of the left and right wheels are calculated
according to Equation (2.2), the yaw moment M, around the wheel
centre of gravity due to the lateral creep force Y and longitudinal creep
force acting on the wheelset can be expressed by the following equations:

Lateral creep force : Y = for, + for = 2K99 <¢W — y—W),
v



b b2 .
Yawmoments : My = —bo fi, + bofir = —2K11 (—1 yw + 70¢W> :
0

The equations of motion for the wheelset can be expressed as follows:

mwiv + 22w — 260%w = 0

261162 3 2K11bo7y
0 hy + 11bo Y = 0

v To

.e )
mwi%vgbw +

(2.5)

where my, 1s the mass of the wheelset and i, is the yaw inertia radius of the
wheelset.

Figure 2.4 shows a block diagram of Equation (2.5). The diagram can be
divided into lateral and yaw dynamics because it is a 2-DOF system. Creep
force acts as damping force in the lateral and yaw dynamics as shown in
term (D and term @ , respectively, in the figure. There is no damper
between the wheels and rails, and the creep force between the wheels and
rails dissipates energy. The yaw angle is converted into a force in the lateral
direction with term . In addition, @ in the figure shows that there is a
term in which the lateral displacement is converted into a yaw moment,
which is a restoring force that tries to return the wheelset to the neutral
position. The block diagram clearly shows how, once lateral displacement
occurs, 1t excites yawing, which is converted into a force that generates
lateral motion again through the generation of yaw angle. Incidentally, if the
left and right wheels are independently rotating wheelsets, the longitudinal
creep coefficient  ,, can be regarded as zero, and terms @ and @ in the
figure will no longer exist. When the coupling term @) is eliminated, the
dynamics coupling is broken, and both the self-steering function and the
hunting behaviour are eliminated.



yw
> J
Coordinate system @ [« 5 y
1170
D)
fu
2K
W
______________________ — v > J' I W
Jir p
Creep forces 211Dy
(Case of yy =0,y =0) \%

FIGURE 2.4 Dynamics of a wheelset represented by a block diagram.<

2.2.2 HUNTING MOTION OF A WHEELSET [7—10]

Although the stability of a wheelset can be assessed through eigenvalue
analysis based on the equations of motion outlined in the previous section,
we will proceed with a simplified version of the equations to examine the
fundamental characteristics. Let us consider the motion of a slowly rolling
wheelset, that is, quasi-static motion. In this scenario, the inertia force of
the wheelset can be regarded as negligible compared to the creep force. As
a result, the equations of motion presented in Equation (2.5) can be
simplified as follows:
202 gy — 2K99thw = 0

2I<L11b(2) 7

o+ 22y, — 0

To

.(2.6)

(%



This equation is a first-order, two-variable differential equation. From the
upper expression in Equation (2.6), the following equation can be derived:

yw = vpw. (2.7)

By using this relation, Equation (2.6) can be reduced to a single equation:
2
o + oLy = 0. (2.8)

The solution to the above equation is

Yw = Asin(&vt). (2.9)

In this case, the period 7 and kinematic hunting wavelength s, are
expressed as follows:

T =2, /e (2.10)

Sy =Tv=2nr bT C(2.11)

Figure 2.5 illustrates the kinematic hunting motion. As indicated by the
wavelength §;, the larger the value of the tread gradient y, the shorter the
wavelength. The kinematic hunting motion is critically stable. However,
due to the mass and inertia effects of the wheelset, the motion of a single
wheelset tends to amplify over time. An actual eigenvalue analysis of
Equation (2.5) confirms that the system remains unstable under all running
velocities.



FIGURE 2.5 Geometrical hunting wavelength for the wheel axis.<]

2.2.3 PURE ROLLING OF A WHEELSET

The wheelset generates a longitudinal creep force by lateral displacement,
which results in a yaw moment. This effect offers a significant advantage
by enabling the self-steering function during passage through a curve. Let
us consider a wheelset running through a curve as shown in Figure 2.6. In a
curve, the lengths of the high and low rails are different, and in order for the
wheelset to roll smoothly on the curve, the wheels on the high and low rails
must have radius differences that do not generate longitudinal creep forces.
In this case, the circumferential velocity v, at the wheel contact point on the

low rail 1s
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FIGURE 2.6 Wheelset during curve passage and illustration of pure rolling.<d

vr, = (R —bo)y = (ro — yy0)12, (2.12)

where 2 is the angular velocity of wheel rolling, ¢ is the yaw angular
velocity of the wheelset as viewed from the curve centre and y, is the

wheelset lateral displacement with respect to the high rail. In contrast, the
circumferential velocity vr of the wheel contact point on the high rail is

vr = (R + bo)yp = (ro + yyo)2 . (2.13)

As shown in Figure 2.6, if the wheel rolls without generating creep forces,
that is, pure rolling, then

VL, : VR = (R — bo) : (R—|— bo) (2.14)
From these relationships, the pure rolling displacement y, is
Yo = . (2.15)

The pure rolling displacement represents the equilibrium point of the
lateral motion of a wheelset running on the curve, and a longitudinal creep
force i1s generated when the wheelset deviates from this equilibrium point.



The locus of this pure rolling displacement is referred to as the pure rolling
trajectory. From the perspective of wheel motion from a relative coordinate
system based on the pure rolling trajectory, the equation of wheelset motion
can be extended from the case of running on a straight line to the case of
running on a curve.

Block diagrams can be used to explain the wheelset running on a curve
as a relative coordinate motion with respect to a pure rolling trajectory. The
external force acting on the wheelset is the centrifugal force while running
on the curve. When a cant is introduced on a curve, the force in the lateral
direction parallel to the track plane is referred to as the excessive
centrifugal force and 1s expressed as

2

F. = my(% — Sg) , 2.16)

where R is the curve radius (m), C is the cant (m), G is the gauge (m) and g

is the acceleration due to gravity (m/s?). The wheelset has a flange to
prevent deviation from the rail, and the lateral rigidity of the rail acts as a
spring force against lateral displacement beyond the flange clearance .

Figure 2.7 illustrates a block diagram of this mechanism.
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FIGURE 2.7 Wheelset when passing through a curve and block diagram of
the rail’s rigidity against lateral displacement.<d

2.3 DYNAMICS OF A TWO-AXLE BOGIE

The previous section focused on a single wheelset and described the
characteristic dynamics of its hunting behaviour and self-steering function.
In actual vehicle motion analysis, it is essential to extend the single
wheelset model to a bogie or a single-vehicle model. In this section, the
two-axle bogie shown in Figure 2.8 is used as a typical example for the
construction of the equations of motion.
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FIGURE 2.8 6-DOF biaxial bogie model.<!

2.3.1 CONFIGURATION OF THE BOGIE MODEL

In the case of a two-axle bogie, a 6-DOF model is used in the analysis,
which accounts for the two sets of front and rear wheels, the lateral
displacement of the bogie frame and the yaw angle as model DOFs when
discussing the running stability. When the model has many DOFs, deriving
the equations of motion from the equilibrium of the creep and spring forces
becomes labour intensive. However, because the creep force between the
wheel and the rail is not an energy conserving system, the Lagrange method
cannot be directly applied. First, we consider a scenario where no creep
force is generated between the wheels and the rails as if the bogie were



riding on air. In this case, the kinetic energy of the front wheelset, rear
wheelset and bogie frame of a two-axle bogie can be expressed as follows:

T = %mwy%\fl + %mwi%v¢%V1 + %mwy%vz + %mwi%vlb%vz + %mTy'?r +
2.17)

4

where mr 1s the bogie frame mass and ir is the yaw radius of inertia around

the centre of gravity of the bogie frame. The potential energy due to the
axle spring is

U= Th(b1pw1 — b1vyr)” + 3 kx(b1ypwa — bitpr)”

1 5 1 5 (2.18)
+ Eky(yW1 —yr —ayr)” + gky(ng — y1 + ar)

where a is half the distance between the bogie axles. From Equations (2.17)
and (2.18), the Lagrangian L=T7T-U is obtained, and the Lagrangian
equation of motion is

d ( 0L oL __
4(£) -2 ~0.19

Here, the generalized coordinate is defined as

X=[yw1 Yw1 vyw2 Vw2 yr V1|

The following equations of motion are obtained by calculating Equation
(2.19):

MX+ KX =0, (220
where
M = diag(mw, mwi%;, mw, mwi%;, mr, mrik),

[ ky 0 0 0

~ = 19 ~ ~



v Kxb? v v
0 0 ky 0
K =
0 0 0 b’
—ky 0 —ky 0
| —kya — kb’ kya — kb’

4

Next, the terms due to the creep force between the wheel and the rail are
considered. From the equation of motion for a single wheelset given in
Equation (2.5), the damping matrix due to creep force C. and the restoring
force matrix due to creep force K. are as follows:

[ 2k99 0 0 0 0 0
0 2xpbl O 0 0 0
o1 0 0 2k O 0 0
10 0 0  2rkpb2 0 o |’
0 0 0 0 0 0
|0 0 0 0 0 0
[ 0 —2ky O 0 0 0 |
by 0 0 0 0
0 0 0 —2kp O 0
S 0 (Zubno g 0 0
0 0 0 0 0 0
| 0 0 0 0 0 0

After these matrices are combined with Equation (2.20), the following
equation can be obtained:

MX +C.X + (K + K.)X0. (2.21)



As mentioned above, the equations of motion can be easily constructed by
separating the terms of the creep force and suspension forces.

2.3.2 BOGIE ON A CURVE

When a bogie runs on a curve, it is crucial to consider how the track’s curve
radius 1s incorporated into the equations of motion, as well as how the
stiffness of the axle supports influences the wheelset’s motion and the
bogie’s attitude. In this case, the bogie motion can be described by using a
relative coordinate system along the curved track. For a wheelset alone, the
motion can be similarly characterised as in the case of a straight track,
where the pure rolling displacement serves as the reference equilibrium
point for lateral displacement. However, in the case of a bogie, it is
necessary to incorporate a coordinate system for the yaw angles of both the
front and rear wheelsets. As illustrated in Figure 2.9(a), the equilibrium
points for the yaw angles of the front and rear axles are located in the
direction normal to the track for each wheelset. In this scenario, the yaw
angles of the front and rear wheelsets, as viewed with respect to the centre
of gravity of the bogie frame, are expressed as follows:

(a) Position of the equilibrium point (b) Definition of wheel yaw angle

FIGURE 2.9 Coordinate system and bogie posture when passing through a
curve.dl
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and this results in a spring force acting through the bogie frame,

Ywi 0
Ywi1 — & 5
k| "™ | —kx_x| | 0o
Ywe + & — 5
yr 0
. YT | 0

and an external force term inversely proportional to the curve radius R is
added to the equation of motion in Equation (2.21).

Next, the quasi-static posture of the wheelset and bogie frame on the
curve 1s described. In the case of a circular curve, the acceleration and
velocity vectors on the left-hand side of the equation of motion in Equation
(2.21) are assumed to be zero, resulting in the following force balance
equation:

(K + K)X = K¢, + F, , (2.24)

where v, 1s obtained from Equation (2.23) as

Y,=%0 1 0 —1 0 0.
(2.25)

F.is the term for the excessive centrifugal force acting on the wheelset and
bogie frame and is described as

Fo= (% - Sg)lmw 0 mw 0 mr 07.26)



Then the quasi-static state X from Equation (2.24) can be obtained as

X = (K +Ko) ™ (K + F) |
(2.27)

From the equation above, the lateral displacement and yaw angle on a curve
can be calculated for both wheelsets and the bogie frame. The yaw angle of
the wheelset corresponds to the angle of attack, which is the angle between
the direction of wheel travel and the tangent direction of the track. A larger
angle of attack results in an increase in lateral force. It is important to note
that the lateral displacement of the wheelset is referenced from the pure
rolling displacement, rather than the displacement from the track centre, as
illustrated in Figure 2.9.

On sharp curves, flange contact occurs due to lateral displacement of the
bogie front wheelset. Although Equation (2.27) is a simplified, linearised
formula, it is useful when discussing the steering performance of bogies.
Figure 2.10 shows the relationship between the lateral displacement of
wheelset and the flange contact considering slack S and flange clearance o.
As the value of tread gradient y increases, the wheelset can avoid flange
contact even on a sharp curve. Figure 2.11 shows the results of lateral
displacement of the leading wheelset derived from Equation (2.27). In this
case, the effect of centrifugal force Fc is omitted for simplicity. Due to the
restriction by the bogie frame and primary suspension stiffness, the lateral
displacement of the leading wheelset of the bogie increases. In this case, the
tread gradient y plays an important role in avoiding flange contact.
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The considerations outlined in this section are for linear systems. In
practice, however, as the wheel diameter difference and angle of attack



increases, the creep ratio increases, causing saturation of the creep force and
non-negligible spin moments. Therefore, the theory based on a linear creep
force, which is not applicable to the negotiation of sharp curves, should be
replaced by numerical analysis using multi-body dynamics, as discussed in
Chapter 3, for quantitative analysis of such curves. Although Equation
(2.27) 1s a simplified, linearised formula, it is still useful when discussing
the steering performance of bogies including those with unconventional
designs [11-18].

2.3.3 GEOMETRIC HUNTING MOTION OF BOGIES

To facilitate a deeper understanding of bogie dynamics, a simplified bogie
model is used to explain the characteristics of bogie hunting behaviour. For
the sake of simplicity, a bogie model with rigid spring stiffness is used. By
assuming the primary suspension stiffness to be infinite, the lateral
displacement of front axis yw; and yaw angle v, are as follows.

yw, = YT + ar
¢W1 = ’(pT

v

} L (2.28)

where yr 1s the lateral displacement of the bogie frame centre of gravity and
v 1s the yaw angle of the bogie frame.

Lateral displacement of the rear wheelset  yw. and yaw angle 4y
are denoted as follows:

Yw2 = Y1 — aYPT

Do — 7 } . (2.29)

By calculating the combined creep forces acting on the four wheels in the
lateral direction and the moment around the centre of the bogie frame, the
equations of motion for a rigid bogie can be described as follows:



mrir + Ly — dkpr = 0

Itp + w@% + 4’1—?)07.% —of =20
where mr 1s the mass of the bogie (bogie frame and wheelset) and Ir is the
moment of inertia around the centre of gravity of the bogie.

This equation of motion is similar to that for a single wheelset as
described in Equation (2.5). Assuming quasi-static motion and neglecting
the inertia term, the following equation can be derived:

g — drypr =0

4(a’+b3)k ;

. (2.31)
) YT + —4'??)07 yr =0

v

From this equation, the lateral displacement equation is derived as follows:

. v2
i1+ Tyt = 0. 2:32)

The geometrical hunting wavelength of the bogie is as follows:
Sy = S14/1+ % . (233)
0

As indicated by this equation, the geometric hunting wavelength s; for a
single wheelset is related to the geometric hunting wavelength S, for the
bogie. It can also be found that, for example, an increase in the wheelbase
results in an increase in the hunting wavelength, which leads to more stable
bogie characteristics. Although these results are derived under the
assumption of neglecting inertia term, similar qualitative trends are
typically observed even when more complex models are employed (see
Figure 2.12).



FIGURE 2.12 Geometric hunting behaviour of a rigid bogie.<

2.4 VEHICLE MODEL

2.4.1 VEHICLE MODEL EXAMPLE FOR VERTICAL MOTION (6
DOFs)

A vehicle model representing the vertical motion of railway vehicles is used
for the analysis of riding comfort or to estimate the wvertical track
irregularities, as illustrated in Figure 2.13.



FIGURE 2.13 6-DOF vehicle model.&l

The model is a single-vehicle linear model that is assumed to run on a
straight track, and has 6 DOFs, that is, 2 DOFs (vertical movement and
pitch) for the car body and 2 DOFs (vertical movement and pitch) for each
of the two bogies.

In the model,  Z. represents the vertical movement of the car body,

Zy represents the vertical movement of the front bogie,  Z;, represents
the vertical movement of the rear bogie, 4. represents the pitch angle of
the car body, 6, represents the pitch angle of the front bogie and 6,
represents the pitch angle of the rear bogie. Inputs  r,,  r, 7, and

r, are the forced inputs due to vertical track displacement given to each
wheelset.

The equations of motion when travelling on a straight track are
expressed as follows:

Car body bounce:
Z, [csz'ﬂ ¥ CoZiy — 26370 + ko Zi + ks Zy — 2kSZc] . (2.34)

_ 1
=



Car body pitch:

b= L [—cslcz'ﬂ b esloZi — 204120, — kgl Zit + kyloZis — 2kslgec] .
(2.35)

Front bogie bounce:

7y =L [(—cs — 2cp)Zt1 + csZ. + el b,

my

+ (ks — 2kp)Zun + ksZ. + ksl 0. + cpia + cpfip + kpria + kpriz
(2.36)

4

Front bogie pitch:

étl = ILt —Cplt’f“la + Cplt’lalb — chlféﬂ — kplt’l"la + kpltle — 2kpl?9t1] .

(2.37)

Rear bogie bounce:

ZtQ = mit |:(—Cs — 2Cp)Zt2 + CSZC - Cslcéc
+ (—ks — Qkp)Zt2 + ki Z,. — k.0, + Cp’f'ga + Cp'f“zb + kp’rza + kp'l"z

(2.38)

Rear bogie pitch:

6 = | —cpliina + cylitay — 2651300 — kyliraa + kyliray — 2kyl20s |

(2.39)

Equations (2.34)—(2.39) can be expressed as an MCK-type equation as



MZ+CZ+ KZ = Dr + Er,
(2.40)

where M, ¢ and K are the mass, damping and stiffness matrices,
respectively, and Z, Z, z, » and r are the acceleration vector, velocity vector,

displacement vector, derivative of the external force vector and external
force vector, respectively. Each matrix in the above equation is given below.

T I. I, I,
M = dlag<m67 72 0 Mty Eamta ?)7

2¢, 0 —Cg 0 —Cg 0
0 2c, —Cg 0 Cs 0
—Cs —cs  2¢cptcs 0 0 0
“=1 o 0 0 2, 0 o |’
—Cg Cs 0 0 2¢p + ¢ 0
0 0 0 0 0 2¢p
[ 2k, 0 —ks 0 —k; 0 ]
0 2k —ks 0 ks 0
—ks —ks 2k, + ks 0 0 0
K=1 0 0 2k, 0 o |’
—ks ks 0 0 2k, + kg 0
0 0 0 0 0 2k, |
[ 0 0 0 0 ]
0 0 0 0
D c, ¢ 0 0 |
cp, —¢c, 0 0
0 0 ¢ ¢
| 0 0 ¢ —c




0 0 0 0
0 0 0 0
B k, kp 0 0 ,
k, —k, O 0
0 0 k, kp
| 0 0 kp  —kp.

Z=12, 1.0, Zy U0y Zy 10p) andr=[ry, ry T T

>

Time series analysis problems, such as vehicle dynamics simulation, require
time integration of the equations of motion. This method is based on
differential equations and is used to obtain the time history response of the
vehicle through a large number of iterations. Common numerical
integration methods include the Euler and Runge—Kutta.

2.4.2 VEHICLE MODEL (17 DOFS)

The 17-DOF model depicted in Figure 2.14 is considered when discussing
the running stability of a vehicle, which includes the 3 DOFs of lateral, yaw
and roll of the car body in addition to the model DOFs of the bogie as the
degrees of motion of a single vehicle. A detailed description of these DOFs

is provided in Table 2.1.
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FIGURE 2.14 Vehicle model for hunting behaviour analysis.<]

This motion DOF framework is intended to analyse the stability of the
hunting behaviour of the vehicle. For example, to evaluate the ride quality
against the high and low displacement of the track, the vertical movement,
including pitching of the car body and bogie, should be considered.

TABLE 2.1
Degrees of freedom per rigid body for a one-vehicle 17-DOF model

Component Degree of freedom Number of bodies Number of DOFs




Component Degree of freedom Number of bodies Number of DOFs

carbody Lateral: yg  Roll: g5 Yaw: ys 1 3
. Roll:
Bogie
frame Lateral: yr; ¢ Yaw: ;2 6
Lateral:
Wheelset Yw; Yaw: Yw, 4 8
Total 17

The subscripts W, T and B indicate the wheelset, bogie frame and car body,

respectively.

i = 1 indicates the front bogie, i =2 indicates the rear bogie, j=1
indicates the front axle of the bogie and  j=2 indicates the rear axle of
the bogie. Even when the number of DOFs of the model increases, the
approach to deriving the equations of motion is the same as that for the
bogie model, and it is efficient to consider the creep force and the stiffness
and damping matrices due to the springs and dampers separately. The
potential energy of the primary spring of the bogie is as follows:

Uri = kweb% (Y1 — wi)® + kwab (Wi — Ywiz)”
+ kwy(yri + avpri + hwadri — ywir)’
+ kwy(yri + avtbri + hwadri — ywiz)’
+ kw.biy (i — dwir)® + kw by (i — dwiz)’.

(2.41)

The roll angle of the wheelset can be approximated using the tread gradient
y as follows:

Pwij = ywit- (2.42)

The potential energy of the springs in the secondary suspension system
between the two bogies and the car body is calculated as

Uy = kryb%(¥p — ¥r1)° + kryba (v — ¥1a)’



+ kty(ys + hrués + a¥s — y11 + hrdT1)” (2.43)
+ kry(ys + hrads — ap¥s — Y12 + hordm)’
+ kb3 (s — d11)° + kb (S8 — d12)°. -

With regard to the damping force of the primary and secondary dampers,
the potential energy of the springs shown above can be used as a reference,
the spring constant can be replaced with the damping coefficient and the
displacement and angle can be converted to velocity and angular velocity,
respectively, to define the dissipation function. For this reason, we omit a
description of the dissipation function of the damper in parallel with the
spring. The dissipation function for the lateral motion damper (two in total,
one on the front bogie and one on the rear bogie), which is not in parallel to
the spring, is as follows:

: : N2
Dip = +cip (QB + hrpu¢s + as¥B — Y11 + hLDL¢T1)
, (2.44)

+ +cip (QB + hipuds — aBs — Y12 + RLDLOT?

From the energy defined above, the damping and stiffness matrices for the
support mechanism can be calculated and combining them with the creep
force term according to the procedure in the previous section allows us to
derive the equations of motion.

Eigenvalue analysis is conducted for the equations of motion of the
single-vehicle model derived in the previous section. The equation of
motion, which incorporates the spring force, damping force, and creep force
resulting from the support mechanism described earlier, is given by:

MX+CX+ KX =0.(245)
The corresponding state equation is

41X ~-M-'C -M'K|X
EX:[ i : ]X.(2.46)



Where 1 and o0 are the identity matrix and zero matrix, respectively, which
are 17 x 17 square matrices for the 17-DOF vehicle motion model. In this
case, the matrix
A 1s defined as
~-M-1C -M'K

A= .(2.47
7 0 (2.47)

The characteristic equation used to determine stability is then given by
det(sI — A) =0.(2.48)

Figure 2.15 presents the results of an eigenvalue analysis with running
velocity as a parameter. As illustrated in the figure, the real part of the
eigenvalues indicates that there is a mode that becomes unstable at a
running velocity of approximately 93 m/s. This velocity is referred to as the
critical hunting velocity. The imaginary part of the eigenvalues indicates
that the value of this mode increases with increasing running velocity. The
imaginary part of the eigenvalue of this destabilizing mode shows that the
value increases as the running velocity increases. This mode is identified as
the hunting mode, with the imaginary part of the eigenvalue indicating that
it exists between the angular velocities derived from the geometric hunting
behaviour of the wheelset and those of the rigid bogie.
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FIGURE 2.15 Eigenvalue analysis of a vehicle model.&

The velocity at which the real part of the eigenvalues becomes positive
can be altered by modifying various vehicle parameters, particularly the
longitudinal and lateral support stiffness of the axlebox. To increase the
critical hunting velocity, effective measures include reducing the conicity,
increasing the wheelbase, decreasing the mass of the wheelset and bogie,
and enhancing yaw damping of the bogie by adding yaw dampers.
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3 Application of Vehicle Simulation to
Railway Safety

DOI: 10.1201/9781003362135-3

3.1 MBD SIMULATION OF A RAILWAY VEHICLE

Typical objectives of vehicle motion simulation include analysis of high-
speed running stability in a straight line, analysis of curve passing
performance, vehicle response to track displacement on a straight or curved
track, verification of running safety, derailment phenomena and overturning
of vehicles. For these problems, it is sometimes possible to understand the
phenomena using relatively simple models as described in Chapter 2.
However, when a more detailed and quantitative discussion is required,
modelling and analysis based on Multi-Body Dynamics (MBD) may be
required [1]. By carrying out an analysis based on such modelling, it is
possible to understand how each parameter of the vehicle influences the
results, which can then be applied to vehicle development, design and
evaluation.

In describing the equations of motion, it is first necessary to determine
the coordinate system. Two typical coordinate systems are shown in Figure
3.1. The equations of motion can be obtained relatively straightforwardly in
the vehicle movement coordinate system. As shown in Figure 3.1(a), a
coordinate system is defined at the centre of the vehicle, which moves as
the vehicle travels. By introducing this coordinate system, the DOFs for the


http://doi.org/10.1201/9781003362135-3

longitudinal direction of each rigid body can be omitted if the inertial forces
due to acceleration and deceleration and the longitudinal forces (for
example, due to couplers) can be ignored. As described in Section 2.3.2 of
Chapter 2, to analyse curving performance using the vehicle movement
coordinate system, the centrifugal force generated when the vehicle travels
along a curve is given to each rigid body as an acting force, while the origin
of the longitudinal and yawing directions are given along the track under
each wheelset.

yc JE
xc B 1 xE o o o
[ '
==
zc Running direction Running direction
_— _—
Xc ZE

(a) Vehicle moving coordinate system (b) Fixed ground-based system

FIGURE 3.1 Coordinate system used in vehicle motion analysis.<!

In a typical hunting motion analysis, the focus is on the lateral
movement and yawing of the vehicle. The translational DOFs of all rigid
bodies are neglected in the vehicle moving coordinate system. Under the
assumption that the vehicle runs at a constant speed, the angular velocity of
rotation of the wheelset is assumed to be constant and the pitching of the
wheelset i1s omitted. Furthermore, when hunting behaviour on a straight
track is analysed, the wheelset rolling becomes a dependent variable of the
lateral displacement by expressing the wheel tread profile. These reduce the
DOFs of the wheelset to two: lateral and yaw. As a result, a single vehicle
can be represented in motion with the 17 DOFs described in Section 2.4.2
in Chapter 2.



However, when the origin of the coordinate system is fixed to a point on
the ground and the motion from that origin is analysed, the fixed ground-
based coordinate system shown in Figure 3.1(b) is used. To describe the
motion in a fixed ground-based coordinate system, the equations of motion
are solved with position and rotation transformations of the vehicle attitude
based on absolute coordinates. The numerical solution of the equations of
motion is therefore more difficult to obtain than in the case of a vehicle
moving coordinate system. However, in the equations of motion for the
vehicle moving coordinate system, it is necessary to add terms for yawing
of the vehicle body and excessive centrifugal force as an external force
when passing through a curve, whereas this operation is not necessary when
using a fixed ground-based coordinate system. The Coriolis forces acting on
the vehicle are also taken into account from the outset in a fixed ground-
based coordinate system. To construct a single-vehicle model in a fixed
ground-based coordinate system, the seven rigid bodies (one body, two
bogie frames and four wheelsets) comprising the vehicle are given 6 DOFs
in translation and rotation, giving an equation of motion with 42 DOFs. It is
assumed that most recent commercial vehicle motion analysis programmes
also define 42 DOFs. For reference, Table 3.1 lists examples of rail vehicle
motion analysis programmes [2].

TABLE 3.1
Examples of commercially available vehicle motion analysis programmes (as of 2024, according to
the author)<l

Name Manufacturer

SIMPACK Dassault Systemes (France)
VI-RAIL VlI-grade (Germany)
VAMPIRE-PRO Resonate (UK)

NUCARS MxRAIL (USA)

VOCO IFSSTAR (France)

GENSYS DESolver (Sweden)




Note: All company and product names mentioned in the table are trademarks or trade names of the
companies concerned.

3.2 CURVING SIMULATION WITH MBD TOOL

3.2.1 SIMULATION PROCEDURE

There are several software packages available for general-purpose MBD
simulations. SIMPACK [3] 1s used for the example vehicle simulation given
here. Figure 3.2 shows the flow from building the vehicle model using
SIMPACK to carrying out the curving simulation.
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FIGURE 3.2 Flow of vehicle modelling (SIMPACK example).<l



To build a vehicle model, the rail cross-sectional profile, tie-plate angle,
gauge, rail support stiffness and other properties are set. Figure 3.3
illustrates typical wheel tread and rails in Japan. Various rail cross-sectional
shapes, including worn profiles, can be handled. Next, a wheelset is defined
on the rail. The parameters of the wheelset include mass, moment of inertia,
tread profile, back-gauge and wheel radius in the neutral position. The
coefficient of friction between the wheel and rail is also set at this time.
There are also a number of models available to represent the creep force
between wheel and rail, but the creep force calculation by the programme

FASTSIM proposed by Kalker [4,5] is generally used.
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FIGURE 3.3 Typical Japanese wheel treads and rail head profiles.<]

A bogie model is then created by connecting the bogie frame to the
axlebox position of the wheelset using the axle support mechanism.
Parameters such as spring constants are selected, and the mass, moment of



inertia and centre of gravity of the bogie frame are set. If the bogie is a two-
axle bogie, the model can be run once to check the operation by users.

The car body is defined as a rigid element and its mass; moment of
inertia and centre of gravity are set. A vehicle model is completed by
adding support elements such as air springs, traction links, side dampers
and stoppers that connect the vehicle body to the bogie frame. For bogies
with bolsters, the bolsters and side beams should be modelled with care.
Recently, the car body can also be included in the model as an elastic
element, but this is time consuming during simulation execution and should
be applied only when the problem being considered requires it.

Track parameters such as curve length, curve radius, transition curve
shape, cant, type of curve with cant, and slack are entered for the vehicle
running simulation. The support stiffness of the track can also be selected.
In some cases, track irregularities are applied in the simulation. The vehicle
runs with a constant speed or a predetermined speed pattern on the input
track. In this case, the front and rear DOFs of the car body do not exist. The
vehicle can also simulate actual running conditions by applying a
prescribed torque to the wheelset. Numerical integration is performed by
entering the above conditions. Numerical integration methods with variable
time steps are common, and the recommended numerical integration
method is often set by default for each software package.

In running simulations, the time response is calculated using the
numerical integration method, and it is convenient to take the distance on
the horizontal axis into account, given the vehicle velocity. This facilitates
analysis of ride comfort, such as where on the track the vehicle vibration
increases, and discussion of running safety, such as where the wheel load
and lateral force change. The results of the analysis can also be shown
graphically. The user interface is well-developed and allows the user to
visually check the vehicle movement and the wheel-rail contact position.

3.2.2 CURVING SIMULATION



An example of curving simulation is shown in Figure 3.4, where the lateral
force, wheel load and derailment coefficient are calculated when the vehicle
runs on a curved track whose curve radius 1s R=200m. For the wheel tread
geometry and rail geometry, the combination of modified arc tread and JIS
50kgN rail was chosen. One vehicle is modelled with seven rigid bodies,
each with 6 DOFs, for a total of 42 DOFs, under constant running speed
conditions of 25km/h. This type of running simulation allows the running
safety of the designed vehicle to be quantitatively investigated and can be
used to optimize various parameters to further improve performance. In
addition, graphical confirmation of the wheel-rail contact positions is
helpful in gaining a deeper understanding of the phenomenon.




30 BTC { BCC [ [ E(_3C lETC
I I | |
I I I I
__20r | | | g
I | I
é 10 | I [ I I :
I I | I
Sl | | | |
0| I 1
I I | |
-10 | 1 | 1 L | | - |
0 50 100 150 200 250
Distance [m]
50 BTC B(;C ECC ETC
I I | |
40 -_y-_’v\,v : : -
— I i | |
é 30 F I 1 —_— w
| |
R I I | |
20 I I | I 4
| [ | |
10 | ] | | I | 1 |
0 50 100 150 200 250
Distance [m]
BTC BCC ECC ETC
I i I ' ' | [ i
I r I I | I i
. I I | |
N | | |
Q. 05 F | | o | | _
= I | I
S | | | |
I I | I
0 | i |
| | | ] ] | 1 |
0 50 100 150 200 250

Distance [m]

FIGURE 3.4 Example of simulation results.<

Figure 3.5 is an example of the illustration of the contact points among

four wheels in a bogie as it runs on a sharp curve. As shown in the figure,
the wheel-rail contact points are different among the four wheels in a bogie
during curving. Generally, the outside wheel of the leading wheelset



contacts the rail at the flange, while both wheels of the trailing wheelset
contact the tread near the neutral position. Especially in the curving
simulation, the contact condition of the leading outside wheel not only has
lateral and vertical forces, but also the flange contact angle shown in Figure
3.6 plays an important role when evaluating running safety against flange
climb derailment.

Leading wheelset

4
Leading outside wheel I / I Leading inside wheel
' r
Outside|rail | ; kﬁejail
Trailing outside wheel F l Trailing inside wheel
: r
Om \{ /\f \ | Inside] rail

Trailing wheelset

FIGURE 3.5 Contact points when the vehicle runs on a sharp curve.d
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FIGURE 3.6 Contact forces and contact angle between the wheel and rail.<]

3.2.3 SAFETY ASSESSMENT OF FLANGE CLIMB DERAILMENT

Flange climb derailments sometimes result in serious accidents, and various
studies for their prevention have been carried out around the world. Elkins
and Cater described the safety assessment methods from European, British
and North American viewpoints [6]. In European countries, safety
estimation has been studied, such as in a Netherlands International Union of
Railways ORE report [7], and the guidelines for the prevention of flange
climb derailments are provided in European Standard EN14363 [8]. In the
United States, TTCI engineers described the limit criterion against flange
climb derailments in a handbook [9]. In these guidelines, the evaluation and
the limit value for safety against derailment are provided as a Y/Q or L/V



value, which is the ratio of the lateral force Y or L to the vertical force Q or
V, and given by Nadal’s formula as the function of flange angle a and
coefficient of friction u:

Y \__ tana—u
(6)_ 1+uptana * (3'1)

In Japan, the safety evaluation and the limit value against derailment is the
Q/P value, which is equivalent to the Y/Q or L/V value [10, 11]. Table 3.2
shows these notations in different countries and regions.

TABLE 3.2
Derailment prevention parameters used by various countries<]
Countryor Region Lateral force  Vertical force  Derailment coefficient
Japan Q P Q/P
Europe and North America Y 0 Y/O
UK L V LV

The safety measure stipulated by the Japan Ministry of Land,
Infrastructure, Transport and Tourism (MLIT) is the ‘Estimated Q/P ratio’,
which is defined as the ratio of the critical value to estimated value of
derailment coefficients O/P of the leading outside wheel of the bogie:

‘Estimated Q/P ratio’ = (Q/P)cri/(Q/P)est.(3.2)

where (Q/P)est 1s the estimated derailment coefficient calculated by the ratio
of the estimated lateral contact force Qest to the estimated vertical contact
force Pest. In this process, Qest is calculated considering parameters such as
the friction coefficient, unbalanced centrifugal force and yaw resistance of
the bogie; Pest is calculated considering the unbalanced centrifugal force
and track twist, and the critical (Q/P)cri 1s calculated by a modified Nadal’s
equation as follows:



Q _ tana—p.
(F) cri_ 1+p tana (33)

using the equivalent friction coefficient we, which increases with increasing
angle of attack. In the MLIT’s procedure [12], the angle of attack value is
given by a chart created from the results of numerical simulations as a
function of track curvature (1/m). The philosophy of this safety measure is
effective and can be used to prevent derailments, but it has a number of
issues related to the assumed value of the coefficient of friction. For
example, the friction coefficient u between the flange surface and the rail
head changes when the lubrication and other conditions change.

Figure 3.7 shows the relationship of the measured Q/P against the
critical value of O/P. In this figure, the critical values of Q/P are drawn in
the relationship to the friction coefficient between flange and rail. At point
B in the figure, the value of Q/P is greater than the critical value, and it
shows that the risk of flange climb derailment may be increased. Contrarily,
at point A in the figure, the value of Q/P is smaller than the critical value
and it is considered to indicate safety against flange climb derailment. In
this way, the value of Q/P cannot serve as a safety estimation only by itself,
and the ratio to the critical value is more important. Therefore, the Flange
Climb Index (FCI) was introduced as a measure of safety against flange
climb derailments [13].
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FIGURE 3.7 Relationship between the real Q/P value and the critical value of
Q/P (flange angle = 67°).<1
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In cases where the FCI is larger than 1.0, flange climb starts as shown in
Figure 3.8. The figure shows the calculated FCI for a curve with a radius of
160 m for = 0.35 and x = 0.65 by MBD simulation. For u = 0.65, the FCI
increases immediately after the train enters the exit-side transition curve
and exceeds 1.0. Subsequently, a flange climb of 3.3mm occurs near the
instance of maximum FCI. In contrast, flange climb does not occur in the
case of u = 0.35, where the FCI value does not exceed 0.6. Thus, the FCI is
effective for determining the possibility of flange climb. To calculate the
FCI value, it is necessary to determine the actual friction coefficient value



between the wheel flange and rail. A way to estimate the value using the PQ
monitoring bogie [14], which measures the wheel load P and lateral force
0, is described in Chapter 4, but it still remains a difficult problem.

Leading outside wheel Leading outside wheel

Flange climb

pu=0.35 /_________._‘_ | £ =0.65

e

FCI

© o o o ,
O N A N 0 = N

I

B oL L - ' - = | —
0 50 100 150 200 250
Distance along track [m]

Flange-climb
height [mm]

FIGURE 3.8 Flange climb height and flange climb index.<]

3.2.4 EXAMPLE OF WHEEL CLIMB DERAILMENT A CCIDENT

Tokyo Metro experienced a derailment accident on the Hibiya line in March
2000. After the derailment accident, several experiments were conducted to
investigate its cause. With great difficulty, it was determined that the cause
of the derailment was a multi-factor derailment caused by the track, the
vehicle and the interaction between the track and the vehicle.



One of the causes of the derailment was thought to be the increased
coefficient of friction between the wheel and the rail on sharp curves with a
large angle of attack, resulting in a large lateral force. Figure 3.9 shows the
results of measuring the ratio of the lateral force (Q) to the vertical force (P)
for the inner side wheel, which corresponds to the coefficient of friction
from 5:00 to 11:00 for running trains. It is estimated that the coefficient of
friction was around 0.2 when the first train of the day ran on the track, but
then increased, reaching a maximum of around 0.7 at 9:00, when the
derailment occurred. This increase in the friction coefficient was thought to
have led to an increase in the lateral force and an increase in the derailment
coefficient. Surprisingly, the coefficient of friction between the wheel and
the rail and the associated derailment coefficient were found to vary from
time to time. These causes of derailments led to two countermeasures. One
was to develop technology to monitor the friction coefficient and the
derailment coefficient on the track at all times. The other was to reduce the
angle of attack to reduce lateral forces through the development of the
single-axle steering bogie.
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FIGURE 3.9 Change in the inside Q/P on the sharp curve of the Hibiya line
accident site.<]

3.3 DYNAMICS OF TRAIN OVERTURN

When running on curves at velocities far in excess of the speed limit or
when crosswinds are strong, rail vehicles are subjected to large forces that



can cause overturn derailment. In this section, an evaluation index and some
case studies are described.

3.3.1 BASIC MECHANISM

Figure 3.10 shows the process of overturn derailment of a railway vehicle.
When rail vehicles are subjected to the large forces described above, first,
one wheel can come off the rail and then, as that wheel rises, the flange of
the opposite wheel rides up onto the rail and derails off the track just before
it falls over. Such derailments are specifically referred to as overturns
because the causes and mechanisms are different from those of flange climb
derailments, and their safety is assessed in a different way. Specifically, the
rate of off-loading is used as an evaluation index, and the overturn limit is
set when the rate of wheel load reduction on one side 1s 1.0, that is, when
the wheel load is zero. When the wheel load on the upwind side of a vehicle
in a crosswind becomes zero, the vehicle is considered to be at the limit of
stability against an overturn, and the wind speed at this point is specifically
referred to as the critical wind speed for overturning.

Start of
overturn

@ : Wheel/rail contact point

FIGURE 3.10 Train overturn sequence.<]

3.3.2 KuNIEDA’S FORMULA



Kunieda’s formula [15] is a simplified formula to calculate the risk of a
train overturning, considering the centrifugal force of running on a curve,
the vehicle and lateral vibration and the crosswind effect. It is a simplified
equation based on a static mechanism, but it agrees well with real
phenomena. It has been certificated in many cases and used for safety
guidelines in Japan.

Figure 3.11 shows an overview of the dynamic model of train overturn.
Danger index D against overturning is calculated by the following equation:
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FIGURE 3.11 Definitions of train overturn parameters.<J
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The first term of the formula describes the effect of the gravity and the
centrifugal force considering the cant (superelevation), the second term
shows the lateral vehicle vibration considering the mass ratio of the body
and bogies and the third term shows the effect of crosswind. The third term
of the equation expresses aerodynamic forces, and a detailed explanation is
omitted here. Equation (3.5) can be simplified as follows:

_ 2 * Ay * h Ay
D= 5{hG7 +hG<1 - ﬁf>?} (3.6)

where AG* (= 1.25hG) is the compensated value of the nominal height of the
gravity centre 4G of the vehicle considering the distortion of bogie springs
shown in Figure 3.11, u is the mass ratio of two bogies/(body-+passengers),
har is the C.G height of a bogie, ay is the acceleration of vehicle lateral

vibration (ay = 0.1g,v >80 km/h, 0y=0.1g x v/80,0 < 80 km/h) and au is the

excessive centrifugal force defined as follows:
2
aw=9(%-9)=9(5-<) 6D

The critical speed v against overturn is calculated by setting D as 1 in
Equation (3.6).

3.3.3 EXAMPLE OF NUMERICAL SIMULATION

To compare the numerically obtained velocity that shows a train
overturning, the results by simulations are compared with the values
obtained by Kunieda’s formula. In the numerical simulation, the value of
the wheel load is evaluated to detect the overturning vehicle velocity. When
a wheel indicates zero wheel load, the train is considered as having reached
the overturn velocity.

Figure 3.12 shows an example of numerical simulation when a vehicle
runs at 80km/h on a track without irregularities. The vertical axis shows the
load for all wheels of the vehicle. As shown in the simulation, the load for



the leading inside wheel is the smallest due to the ability of the vehicle to
travel on a curve. At this velocity, it retains enough wheel load against
overturn derailment. Figure 3.13 shows an example when the vehicle runs
at109 km/h without track irregularities. The load for the leading inside
wheel is close to zero, which means that the vehicle velocity is at the
critical limit for overturn derailment.
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FIGURE 3.12 Overturning simulation model.<
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FIGURE 3.13 Overturning simulation results.<]

To evaluate the fundamental effectiveness of Kunieda’s formula for
different gauges, some adjusted numerical simulation models are used for
verification. In the numerical simulation, the gauges are adjusted as 1.435
and 1.667m to consider both standard and wide gauges. The lateral distance
of the attachment points of primary suspensions are suitably adjusted in
these brief simulation conditions.

Table 3.3 shows the results of a comparison between Kunieda’s formula
and MBD simulation in terms of the critical velocity limit against train
overturn. The agreement between them is good so we can conclude that



Kunieda’s formula is fundamentally useful for predicting the actual train
overturn speed almost corresponding to the MBD simulation.

TABLE 3.3

Comparison of Kunieda’s formula and MBD simulation for critical speed limit against overturning<l
Trackgauge Kunieda’s formula MBD simulation
Narrow gauge (1.067m) 105.7km/h 109km/h
Standard gauge (1.435m) 118.7km/h 121km/h
Wide gauge (1.667m) 127.0km/h 130km/h

3.3.4 EXAMPLES OF TRAIN OVERTURN ACCIDENT ANALYSIS [16]

Derailment accidents due to excessive speed on curves have occurred
around the world, and the results of analysis of some of these accidents are
discussed here. Table 3.4 shows features such as the track gauge, curving
radius, train running speed and speed limit at accident sites. The estimated
limit speed against overturn is calculated by the investigation organizations
and/or by one of the authors, using numerical simulations and/or the
simplified formula mentioned before.

TABLE 3.4
Outline of train overturn accidents<l
Curve Speed Estimated limit speed
Accidentname Gauge radius Speed limit against overturn
(Country) Kind of train (mm) (m) (km/h) (km/h) (km/h)
Fukuchiyama Commuter
L. (Japan) (EMUs) 1067 304 116 70 106-108
Sight-
seeing

Glacier Express

(Swiss) (EL+PCs) 1000 85 56 35  52-55



Curve Speed Estimated limit speed

Accidentname Gauge radius Speed limit against overturn

(Country) Kind of train (mm) (m) (km/h) (km/h) (km/h)
High-
speed

Spanish high-

speed train (COIIlp osed

(Spain) train set) 1668 380 153 80 130-145*
Commuter

NY Metro h

North Rail (push-

(USA) pull) 1435 291 131 48 115-125*
High

Amtrak d

Philadelphia ~ SP°C

(USA) (EL+PCs) 1435 437 163 80 130-140*

* Rough estimate.

In the case of the Swiss Glacier Express, the overturn was caused by too
early acceleration at the exit of a curved section, so the trailing vehicles in
the train set exceeded the critical speed against train overturn. This shows
that it is also important to consider the running speed at the exit of curves,
especially for a long train set and high-acceleration vehicles, including the
case of passing through turnouts.

At all accident sites, no speed limit signalling devices were provided.
The running speeds at the accident sites were +21 to +83 higher than the
regulated speed limits and +3 to +30 higher than the critical speeds.

Parameters such as the track gauge width, the CG (Centre of Gravity)
height of the vehicle and the curving radius mainly determine the critical
speed limit against overturn. The relationship between the critical speed and
these parameters can be calculated by Kunieda’s formula. The critical speed
1s heavily influenced by the ratio of the CG height of the vehicle to the track
gauge width, which is called the CG/gauge ratio. The relationship between
the critical speed limit against overturn and CG/gauge ratio is depicted in
Figure 3.14. The features of the train overturn accidents in Table 3.4 are
also plotted in the figure. The overturn critical speed limit Veri decreases as



the CG height/gauge width ratio increases, that is, due to an increase in the
CG height of the vehicle, and the track gauge width decreases. A decrease
in the curve radius R also decreases the critical speed.
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FIGURE 3.14 Comparison of train overturn accidents.<

Figure 3.15 illustrates an overview of the critical speed limit to prevent
train overturn against the CG height/gauge ratio and the curving radius in a
three-dimensional graph. The dot in the centre of the graph shows a
condition almost equivalent to that at the Fukuchiyama accident site. The
critical speed increases as the cant angle increases, which is the ratio of
super-elevation versus the gauge width. The number of passengers also
influences the CG height, so the increase in the number of passengers
causes the critical speed limit to decrease.
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FIGURE 3.15 Overview of train overturn critical speed limit.<]

The influences of these factors are shown in Figure 3.16 around the
reference point (Veri = 106km/h; C.G/gauge = 1.35, R =300m, ¢ = 0.1m and
92 passengers). As for track super-elevation, a decrease of ¢ = 0.1m to Om
decreases the critical speed Veri = 106km/h to 88km/h, and an increase of ¢
= 0.1m to 0.15m increases Veri = 106km/h to 114km/h. As for passenger
numbers, an increase to 150% of full capacity (from 92 to 210 passengers)
decreases the critical speed Veri = 106km/h to 103km/h, and a decrease to
no passengers (from 92 to 0) increases Veri = 106km/h to 109km/h.
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FIGURE 3.16 Factors influencing train overturn critical speed.<!

Although the effects of wind are not taken into account in this book,
various studies have been conducted on safety assessments that take wind
into account [17-20].
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4 Condition Monitoring and Condition-
Based Maintenance

DOI: 10.1201/9781003362135-4

4.1 GENERAL CONCEPTS AND METHODS OF
CONDITION MONITORING

Condition monitoring is considered to be an advanced concept for Fault
Detection and Isolation or Identification (FDI), which has been the subject
of various studies [1]. Condition monitoring is mainly applicable to systems
whose condition degrades over time. The main purpose of condition
monitoring is to detect faults before they occur and to identify their causes
[2, 3].

Figure 4.1 illustrates the concept of condition monitoring. Diagnosis can
be performed on time-series data obtained from various sensors by focusing
on the current information. In addition, the future state can be predicted (to
formulate a prognosis) by analysing the changes in data from the past.
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FIGURE 4.1 Concept of condition monitoring.<!

The general framework of state monitoring or FDI is shown in Figure
4.2. The outputs are the measurements and the inputs correspond to those
measurements from an asset. Unobservable disturbances can affect the
system. In general, we consider a dynamic system failure corresponding to
an input  «, output  » and unknown disturbance  d.
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FIGURE 4.2 General framework of FDI.d
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4.2 MODEL-BASED METHODS

If a physical model of the asset and the input « are available, the model-
based method, which can be defined as detection and decision-making
based on the evaluation of residuals, can be used. Figure 4.3 shows the
basic structure of a model-based FDI system.
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FIGURE 4.3 Basic structure of model-based FDI system.&

Residuals can be generated in a number of ways, and they essentially
capture the differences between what the model and the measurements
indicate. They should be zero or close to zero if the model and the system
itself are similar, that 1s, if there is no fault. Evaluation of the deviations
away from zero can then be used to determine fault(s).

Model-based FDI can be divided into the following methods:



e Parameter estimation method
e Parity equation method
e Observer/Kalman Filter (KF)-based method.

4.2.1 PARAMETER ESTIMATION METHOD

Parameter estimation is applicable if the faults are associated with changes
in the system parameters. The residuals are the differences between the
nominal system model parameters and the estimated parameters.

Various parameter estimation methods are possible, such as the equation
error method and output error method, which are shown schematically in
Figures 4.4 and 4.5, respectively.
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FIGURE 4.4 Parameter estimation with the equation error method.<d
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FIGURE 4.5 Parameter estimation with the output error method.J

Fault detection by parameter estimation relies on the fact that a possible
fault in the monitored system can be associated with specific parameters in
the modelled system given by an input and output relation.

4.2.2 OBSERVER/KALMAN FILTER-BASED METHOD

The existence of a physical model enables an observer-based method to be
used. The residuals, r, are obtained by the difference between the measured
output, 2, and the predicted output from the nominal model, as shown in
Figure 4.6.
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FIGURE 4.6 Model-based state estimator.<]

These methods include observers, KFs (see Appendix A2.6), Extended
KFs (EKFs) (see Appendix A2.7), unscented KFs and particle filters.
Cubature KFs have also received attention in recent years.

The observer-based method is appropriate if the faults are associated
with unmeasured state variables. The unmeasured states are constructed
from the measurable input and output using a Luenberger observer for the
deterministic case or a KF for the stochastic case.

The particle filter is a method that can handle nonlinear systems, but it
has the disadvantage of a large computational load. KFs are used in many
fields due to their low computational load and suitability for real-time data
processing.

4.3 MODEL-FREE METHODS

If the only output available is 2, signal processing methods without models

can be applied. These methods include frequency selective filters, spectral
analysis, the maximum entropy method, wavelet analysis and vibration



analysis (on the amplitude and phase). Other methods include expert
systems, fault tree analysis, principal component analysis and independent
component analysis.

Recently, techniques for analysing large amounts of data using artificial
intelligence are spreading. In addition to traditional machine learning
techniques such as neural networks and support vector machines, deep
learning using deep neural networks, which can perform unsupervised
learning, is rapidly developing. These techniques are also used in current
railway condition monitoring, and their use is expected to grow in the
future.

4.4 APPLICATION TO RAILWAY CONDITION
MONITORING

4.4.1 CoONCEPT OF RAILWAY CONDITION MONITORING AND
LITERATURE REVIEW

The purpose of condition monitoring in railways is to monitor the condition
of vehicle components and track and detect signs of impending derailment.
Figure 4.7 shows the relationship between inputs and outputs for condition
monitoring on railways (mainly for rolling stock and track systems). The
track geometry is input and the vehicle vibration, noise and temperature are
output. The objective is to use this information to detect the condition of the
vehicle suspension, signs of impending derailment and track conditions. In
particular, track geometry cannot be measured directly, so it must be treated
as an unknown state to be estimated.
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When constructing a diagnostic system, particular attention should be paid
to the following questions:

What do we want to diagnose and when?

What should be measured?

What can be measured?

Is sensor fusion necessary?

Can we 1dentify changes in conditions over time?

What is the relationship between degradation trends and the measured
data?

How do we extract hidden signals?
How do we process huge amounts of data?

4.4.2 VEHICLE CONDITION MONITORING

4.4.2.1 Detection of Defects and Deterioration in Vehicle Suspensions

Vehicle inspections are particularly important to prevent serious accidents.
Condition monitoring is necessary for early detection of vehicle failures,
and methods to detect vehicle defects based on signals from sensors



attached to the vehicle have been proposed for real-time monitoring.
Condition monitoring is an important element of Condition-Based
Maintenance (CBM), which detects and identifies deterioration before it
causes a failure. FDI technology, which has been studied extensively, can be
applied to vehicle condition monitoring [4]. Li et al. provided an overview
of approaches applied to railway vehicle on-board health monitoring
systems [3]. Charles et al. described a method to estimate wheel/rail profile
and adhesion state using a KF [6], and a Rao-Blackwellised particle filter to
estimate damping coefficients and tread gradients of left-right dynamic and
yaw dampers [7]. The EKF has been applied to health monitoring of the
lateral suspension of the Italian ETR 500 class of high-speed trains [8]. A
model-based condition monitoring strategy based on the recursive least-
square algorithm was proposed by Liu et al. [9].

Jesussek et al. described a method to detect left and right suspension
anomalies and their types using a hybrid EKF [10]. Tsunashima et al.
developed a method to detect suspension failures using the interacting
multiple model method [11, 12]. Moreover, a method for detecting
suspension failures using multiple models without considering dynamic
transitions between models has also been reported [13]. A method for
monitoring the condition of railway vehicle suspensions using the cubature
KF has also been proposed [14].

For monitoring the condition of suspension systems, an online modal
identification scheme was proposed by Liu et al. [15]. Health monitoring of
high-speed train suspension using computational dynamics and acceleration
measurements was described by Lebel et al. [16]. A robust data-driven
method for on-board vibration-based degradation detection in railway
suspensions was introduced in [17]. A multistage clustering framework for
unsupervised condition monitoring of train wheels was proposed by Ghiasi
et al. [18]

4.4.2.2 Detection of Improper Running Conditions

Vehicle condition monitoring can also be used to detect inappropriate
running conditions such as derailments, hunting and temperature increases



in the axlebox that may affect running safety. In particular, derailments
require early detection of signs of derailment in order to take appropriate
action before the situation reaches an unrecoverable stage. Sun et al.
describe a measuring system for hunting behaviour monitoring of high-
speed railway vehicles using signal-based techniques [19].

Wheel load and lateral forces, which are physical quantities that express
the condition between the wheels and rails when a train is running, are very
important control items for the safety management of railways. The lateral
force divided by the wheel load is called the derailment coefficient, and this
value is controlled to be less than a standard value to prevent derailments
[20]. Wheel load and lateral force have conventionally been measured by
affixing strain gauges to the wheels and extracting them using slip rings, or
by using strain gauges and displacement gauges on the rails on the ground
side.

Xia et al. [21] proposed a method to estimate derailment coefficients
using an inverse model, and Matsumoto et al. [22] developed a non-contact
method to estimate derailment coefficients using an optical sensor
continuously mounted on the vehicle. Tokyo Metro has developed a
monitoring bogie that can measure the derailment coefficient in a non-
contact manner as described above, and report daily and monthly changes
in the derailment coefficient [23, 24].

However, it is also important to take action to deal with the post-
derailment consequences. This is not aimed at preventing derailments, but it
i1s important for reducing secondary risks, particularly for freight trains.
Boronenko et al. [25] described a method for detecting derailments of
freight vehicles from bogie vibrations, which was validated by numerical
simulation and in-service train testing. Hubacher et al. [26] proposed a
method for emergency braking to act on freight trains. Koga et al. reported
on the development of a system for detecting improper running of vehicles
[27].

The coefficient of friction between the wheel and rail is an important
factor in the longitudinal control of a vehicle. Ward et al. [28] and Hubbard
et al. [29] developed a method for on-board detection of low adhesion



conditions using a Kalman—Bucy filter and a signal processing-based
method. Zhao et al. [30] proposed a method to estimate creep forces and
friction coefficients using the unscented KF. Hussain et al. proposed a
multiple model estimation approach for the identification of the adhesion
limit in wheel-rail contact using a bank of KFs [31]. Mosleh et al.
introduced a wheel flat detection method based on the continuous wavelet
transform and a features extraction technique [32].

4.4.3 TRACK CONDITION MONITORING

Track irregularities are closely related to vehicle ride quality and safety and
are one of the most important inspection items. Track irregularities include
gauge, longitudinal level, alignment, cross level and twist irregularities.

There are three major types of sensor arrangements for track condition
monitoring using in-service trains, as shown in Figure 4.8. The first is to
mount the sensor on the axlebox.

Car body mounted sensors

Track geometry

FIGURE 4.8 Sensor configuration for in-service vehicle.<l



Inertial measurement is a well-known method for measuring track
displacement. This method has the advantage of direct measurements of the
track condition. The inertial measurement method uses the physical law that
displacement can be calculated by integrating acceleration twice and
calculates track displacement from the output of an accelerometer attached
to the axlebox. The relationship between axlebox accelerations and railway
track defects or irregularities has been analysed and used to identify track
faults [33-37].

The second method is to mount the sensor on the bogie. This method is
easier to maintain than mounting on the axlebox but requires careful
consideration of the position of the sensor on the bogie. A track irregularity
monitoring method using bogie-mounted sensors was proposed in [38-40].

The method with the best maintainability is to install sensors inside the
car body. In this method, vibrations generated by track geometry are
transmitted to the car body via the primary and secondary suspensions.
Therefore, it is necessary to examine the effect of track conditions on the
car body vibration. Tsunashima et al. developed a system to identify track
faults using accelerometers and a GNSS antenna placed on the car bodies of
in-service vehicles [41, 42]. Bai et al. used low-cost accelerometers placed
on or attached to the floors of operating trains to analyse track conditions
[43]. Track condition monitoring based on bogie and car body acceleration
measurements was presented and verified [44]. Balouchi presented a cab-
based track-monitoring system [45]. Chellaswamy et al. described a method
for monitoring railway track irregularities by updating the status of tracks in
the cloud [46].

Recently, a method was proposed for diagnosing track conditions by
substituting dedicated sensing devices with general-purpose smartphones.
Rodriguez et al. proposed the use of mobile applications to assess the
quality and comfort of railway tracks [47]. Cong et al. described the use of
a smartphone as a sensing platform to obtain real-time data on vehicle
acceleration, velocity and location [48]. Paixao et al. used smartphones to
perform constant acceleration measurements inside in-service trains, which
can complement the assessment of the structural performance and



geometrical degradation of the tracks [49]. A smartphone-based track
condition monitoring system was developed for regional railways in Japan
[30].

Model-based estimation techniques have been proposed to solve the
inverse problem of estimating track geometry from vehicle vibrations. KF-
based methods have been developed to estimate the track geometry from
car body motions [51, 52]. A nonlinear model-based estimation procedure,
based on a central difference KF, was used to estimate the lateral wheel-rail
contact forces and moments, including the identification of lateral track
irregularities [33].

However, these methods present significant challenges for railway
operators when they are used daily. Paglia et al. described a method to
predict track longitudinal level irregularity using the bogie vertical
acceleration from in-service vehicles [54]. A linear regression model was
used to estimate track irregularity. Tsunashima proposed a method for
estimating track irregularity using Gaussian Process Regression (GPR)
based on data obtained from a vehicle travelling simulation [35, 56].

Time-frequency analysis can be applied for identifying track faults [57,
58]. Tsunashima et al. described a method for automatically classifying the
type and degradation level of track using a convolutional neural network by
imaging car body acceleration on a time-frequency plane by continuous
wavelet transform [59]. A Wasserstein generative adversarial network-
based framework was developed for real-time track irregularity estimation
[60]. A deep learning technique was applied to car body acceleration for a
high-speed railway for estimating track geometry [61]. A lightweight multi-
layer-perceptron deep learning architecture was used to estimate track
vertical irregularities of railway bridges from vehicle responses [62].

4.4.4 SYSTEM DEVELOPMENT FOR CONVENTIONAL LINES

Condition monitoring is a technology that has been put to practical use in
recent years due to the rapid development of sensor technology, and is
based on the concept of maintaining a certain level of safety and other



functions by constantly monitoring the condition of various parts of the
railway system while it 1s in use. If the condition of a running vehicle can
be measured from the ground, it is possible to monitor the condition of all
vehicles passing a certain point, and conversely, if the condition of the track
on the ground can be monitored from the vehicle side, it is possible to
determine the condition of the track on which the vehicle is running.

4.4.4.1 PQ Monitoring Bogies

In underground railways, where there are many sharp curves, it is extremely
important that the vehicles pass through the curves safely and smoothly. To
achieve this, it is important to reduce the derailment coefficient by reducing
the lateral force when passing through curves, to reduce noise and vibration
associated with the passage, and to reduce unusual wear such as lateral wear
of flanges and rails, as well as rail corrugation.

The derailment coefficient, which is used as an indicator of the running
safety of railway vehicles, is the ratio  P/Q of the longitudinal (wheel
load) force P to the lateral force = @ applied to the wheels, and the
derailment coefficient that occurs while the train is running is lower than
the critical derailment coefficient (an indication of safety) calculated from
the contact geometry and friction coefficient between the wheels and rails.
The safe running of a train is ensured if the derailment coefficient is lower
than the derailment limit coefficient (the reference value for safety)
calculated from the contact geometry and friction coefficient between
wheels and rails.

Traditionally, derailment coefficients have only been measured on
limited occasions, mainly when new lines are opened or new rolling stock is
introduced, and there has been no observation of how they change over
time. However, recent research has shown that the derailment coefficient
changes even when the same vehicle passes the same point on the same
route. This has led to a need for the development of a constant monitoring
system on in-service trains to capture changes in derailment coefficients
under different conditions.



Conventional derailment coefficient measurements require the use of
special wheelsets called PQ wheelsets. These measure wheel load and
lateral force from wheel strain and cannot be installed on operational trains
due to the fact that they have many strain gauges attached and holes drilled
to allow signal lines to pass through, and the brakes cannot be applied to
avoid thermal effects, thus making it possible only on limited occasions to
measure the derailment coefficient with these wheelsets on special trains.
Measurements could only be made with a limited number of running tests.
In addition, a slip ring or telemeter is required to retrieve signals from the
rotating PQ wheelset, which is not suitable for constant monitoring.
Therefore, a new method to measure wheel load and lateral force without
using the PQ wheelset was developed, using sensors mounted on the bogie
rather than on the wheels (Figure 4.9).
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FIGURE 4.9 PQ monitoring bogie.<]

The wheel load was measured by capturing the deformation of the bogie
instead of the wheel strain, and the vertical displacement of the springs in
the axle was measured by a magneto-strictive sensor. For the measurement
of lateral force, the deformation of the wheel was directly measured by a



non-contact displacement transducer installed near the axlebox of the bogie.
The wheel is not only deformed by lateral force while running, but also by
lateral displacement due to rattling of the bearings and displacement due to
the inclination of the wheel itself. To filter out these effects and to capture
only the deformation caused by lateral force, a supplementary sensor was
installed. The use of conical roller bearings and the fixing of the bearings
minimised lateral displacement as much as possible and made it possible to
accurately detect small deformations caused by lateral forces.

Comparisons with measurements using conventional PQ wheelsets show
that the measured values are in good agreement and that there are no
practical problems. In addition, for constant monitoring on commercial
trains, the brakes are not applied to the wheels but to brake discs to avoid
thermal deformation of the wheels due to braking.

As a result of these various measures, bogies that can constantly measure
the derailment coefficient on in-service trains have been produced and
measurement data are obtained on a daily basis using in-service trains.
These bogies are used on the Marunouchi, Tozai and Chiyoda lines of the
Tokyo Metro system as well as on the Shinjuku Line of the Tokyo
Metropolitan Transportation Bureau in Japan.

4.4.4.2 Track Monitoring Equipment

The track monitoring system, developed by JR East, Japan Railway Track
Consultants and others, monitors track irregularities and the condition of
sleepers, rail fasteners and other parts of the track from in-service trains,
and is mounted under the floor of the train to enable high-frequency data
acquisition (Figure 4.10).



FIGURE 4.10 Track monitoring system developed by JR East.<l

Track monitoring equipment consists of two devices: ‘Track
displacement monitoring equipment’ and ‘Track material monitoring
equipment’. Track displacement monitoring equipment acquires track
displacement data using laser displacement sensors, gyroscopes and
accelerometers, while track material monitoring equipment captures images
of the state of components such as sleepers and rail fasteners, and uses the
image data to automatically or visually identify faults in the track.

4.4.4.3 Wheel Flat Detector

Flattening, in which part of the wheel is shaved off and the wheel’s
roundness is impaired due to sliding during braking, is a lingering problem
that causes significant noise and vibration, so it must be detected and
counteracted as soon as possible. For this reason, various detection systems
have been developed and are used by railway operators. The system
measures and analyses the vibration and noise of a passing train from the



track-side. Generally, the system consists of an accelerometer to detect the
impact acceleration caused by flats and a wheel detector to detect the
passing of the wheels.

4.4.4.4 Wheel Load Measuring Device

In the Hibiya Line Nakameguro accident in 20001, one of the reasons
behind the accident was the imbalance between the left and right wheel
loads, which resulted in the Japan MLIT issuing a notification to control the
left-right wheel load imbalance to 10% or less. For this reason, railway
operators have considered ways to accurately measure the load of each
wheel in a bogie, and equipment has been developed and installed to
measure the wheel load of wheelsets in service. Such systems use load cells
or strain gauges affixed to the rails to measure shear or bending strain.

Figure 4.11 shows the principal of measuring lateral and vertical forces
with strain gauges attached to the rail, as introduced in Tokyo Metro. In this
figure, the wheel between sleepers provides a vertical force (V) on to the
rail and the forces  Ww; and W, react from sleepers to the rail. These
three forces acting on the rail produce shearing strains, which are drawn
with arrows on the surface of the rail web. These shearing strains are
proportional to the vertical force. Figure 4.11(b) shows the strain gauges
attached to the rail. The principal of measuring lateral force is the same as
that of vertical force.
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FIGURE 4.11 Wheel load and lateral force measurement device.<l

Figure 4.12 shows the overall monitoring system. The sensors, which
measure lateral and vertical forces using strain gauges, are attached to the
rail. The real-time monitoring equipment consists mainly of data acquisition
equipment located at specific curves on a commercial line and monitoring
equipment located at train depot offices and elsewhere. Data collection
equipment begins to measure the lateral force and the vertical force and
automatically detects the passing of vehicles at the measurement point.
Specifically, it gathers several types of data while a train passes through that
point. Train information obtained via a beacon (such as the number of
operations, number of trains and operating company, taking into account
interconnections between different railway companies) is attached to the
measured data. The data collection equipment automatically transmits these
data to monitoring equipment at the depot, office and command centre via a
fibre optic network. The monitoring equipment receives data each time the
wheels pass the measurement point and analyses the wave form data for
specific values that indicate the performance of the vehicle dynamics.
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FIGURE 4.12 Realtime PQ Monitoring system from the track-side.<

A series of freight train derailments on the JR Hokkaido Esashi Line
between 2012 and 2014 was investigated by the Japan Transport Safety
Board, and a recommendation was issued to the MLIT regarding
improvements to the imbalance in wheel load of freight cars due to uneven
container loading. The Japan Freight Railway Company has introduced a
device to check the wheel load imbalance of wagons in service. This
method was adopted because it is extremely difficult to check the internal
condition of containers during transport.

4.4.4.5 Derailment Detector

There have been accidents in which a car at the rear of the train derailed,
but the driver was unaware of it and continued to drive the train, causing the
accident to escalate in severity. If the driver is informed of a derailment as it
unfolds, the driver can take actions such as emergency braking and the
accident can be prevented from growing more severe. In Japan, Tokyu Car
Corporation (now Japan Transport Engineering Company) and JR East
jointly developed a type of acceleration sensor mounted to car bodies at
both ends of the train. After adding and improving algorithms to detect
overturning and collisions as well as derailments, the system has been
installed on all of JR East’s E331 series trains since 2006. Subsequently,
this system was improved and developed, and a type with sensors in all



cars, including the intermediate cars, began to be installed on the Tokyo
Metro’s Hibiya Line 13000 Series from December 2018.

JR West has been equipped with an unusual train behaviour detection
system for Series 521 trains (3rd generation) since they were introduced in
FY2013. The system is designed to perform emergency braking when the
value reported by the acceleration sensor installed on the car body frame
near the bogie of each car exceeds a threshold that takes the possibility of
derailment, overturn or collision into account.

4.4.5 SYSTEM DEVELOPMENT IN SHINKANSENS

Shinkansens carry out daily transport using a large number of vehicles and
other assets and systems. Monitoring these assets and systems is an
important aspect of operation. Using dedicated vehicles to collect data on
assets along the line (for example, track, overhead contact line, signalling
and radio) has been applied since the beginning of the Shinkansen service.
Data collection methods for track-side assets using in-service trains are also
being developed by JR companies, including JR Kyushu.

4.4.5.1 Monitoring of Track-Side Assets Using Electric and Track
Inspection Cars

1. Tokaido and Sanyo Shinkansens: An electric and track inspection car
(three-bogie system), capable of travelling at 210km/h, was completed in
1974. Along with various channels of data collection, it also monitored
the power collection condition of the pantograph systems from the
observation dome. In 2001, a car based on the Series 700 Shinkansen
train (two-car system) was introduced. On the Tokaido and Sanyo
Shinkansen lines, these electric and track inspection cars (known as
“Doctor Yellow”) are used to carry out measurements on the entire line at
approximately 10-day intervals.

2. Tohoku, Joetsu and Hokuriku Shinkansens: In 1982, a modified Type 925
Shinkansen test train was used as an electric and track inspection car.



Later, in 2001, track electric and track inspection cars Type E926 (East
Eye), based on Series E3 Shinkansen trains (six-car train), were used.
These vehicles enable on-board data analysis and easy communication
with the command centre, allowing rapid action to be taken depending on
the data provided. The acquired data is analysed in detail, including time
series, by each maintenance department and used to plan maintenance
work.

4.4.5.2 Monitoring of Track-Side Assets Using In-Service Trains

Electric and track inspection cars are not used on Kyushu Shinkansen due
to the line conditions and the efficiency of maintenance work. Since the
start of operations, measurement equipment has been installed on the roof
of the 800 Series Shinkansen trains to collect data during in-service runs.
For the track, data were obtained by running test trains at 120km/h during
nighttime hours; in 2010, dedicated measuring equipment was developed
for in-service trains. This was mounted on the lower part of the 800 Series
bogie and measurements were commenced. Further developments have also
made it possible to measure the wear of contact wires in a catenary system
at high speeds using an in-service train.

On the Tokaido Shinkansen, equipment for automatically measuring
vertical rail changes was installed on Series 300 Shinkansen trains from
2002, and data collected on in-service trains were recorded on IC cards and
analysed at the depot. Today, in-service trains can be used to measure track
irregularities, which are mounted on N700S trains and the measurement
data 1s transmitted to the depot using leaky coaxial cable radio transmission.

4.4.5.3 Track-Side-Based Vehicle Condition Monitoring

As a method for monitoring passing vehicles from the track-side, axlebox
heat detection systems have been used on the Tokaido Shinkansen since its
inauguration (Figure 4.13). Temperature sensors are installed alongside the
tracks to monitor the heat generated in the axleboxes of passing trains, and
an alarm is used to alert the relevant authorities in the event of a



malfunction. Improvements have been made to this method, such as
increasing the accuracy of measurement and reading the train number. A
method of measuring by infrared sensors has been in use since 2007. A
method for detecting temperature rises in the axlebox and related
components around the wheelset from the underside and sides of the track
began operating on the Tokaido Shinkansen in 2015, with the number of
measuring points increased to five in 2020. This has made it possible to
monitor temperature changes in the same part of the train during running.
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FIGURE 4.13 Axlebox heat detector developed by JR Central.<

4.5 CONDITION-BASED MAINTENANCE (CBM)

Railways consist of many subsystems, including structures (track),
mechanical systems (wheels, bogies, and car bodies), vehicle traction and
braking systems (motors and their control units, brakes and their control
units), power supply systems (substations and power cables), signalling and
security systems (on-ground and onboard), communication systems and
other systems (for example, stations and level crossings). The basic
principle has been to inspect and repair each subsystem to maintain a
certain level of performance, and regulations are also based on this concept.

Time-based maintenance is relatively easy to manage and provides a
high degree of reliability, but it also carries with it the potential for



unnecessary maintenance and the inability to respond to rapid changes. In
contrast, CBM enables flexible maintenance in accordance with the state of
degradation, and maintains a certain level of safety and other performance
metrics at a lower cost. These methods have become possible largely due to
improvements in sensor technology that have made it relatively easy to
monitor the condition of vehicles and tracks.

If the condition of a travelling vehicle can be measured from the track, it
1s possible to monitor the condition of the wheels and other components of
all vehicles passing a certain point, and if the condition of the track can be
monitored from the vehicles, it is possible to monitor the condition of the
line the vehicle is travelling on. Such monitoring 1s in high demand in
Europe, where freight wagons and other vehicles of many nations operate
across national borders, and has been developed and put into practical use
in Japan. CBM is not only effective in reducing costs and manpower, but is
also capable of maintaining effective and safe conditions, and therefore
inspection and maintenance is expected to move towards this approach in
the future.

4.5.1 ACHIEVING GOOD CURVE PASSAGE wiTH CBM

CBM, in which track and vehicle maintenance is performed while
continuously monitoring wheel/rail conditions, has proved very effective in
solving safety problems such as reducing the increase in derailment
coefficient and maintenance problems such as reducing rail corrugation and
rail/wheel side wear. These wear conditions are detrimental and especially
occur on curved sections. CBM is very effective in solving maintenance
problems such as rail corrugation wear and reduction of rail-wheel side
wear.

Figure 4.14 illustrates conceptually how CBM can improve curve
passing performance and at the same time prevent undesirable wheel—rail
phenomena. First, it is important that the measures to achieve perfect rolling
on sharp curves are reflected as basic specifications in the design,
manufacturing and installation stages for bogies, other rolling stock, rails



and other track. In other words, these must first be considered in the basic
concept. Next, in the actual operation phase, the condition of the wheel-rail
contact system is continuously monitored, and based on the results, areas
that cannot be covered by the basic design specifications or that cannot be
achieved due to deterioration of the basic specifications are supplemented
or corrected by oil lubrication, friction adjustment or wheel and/or rail
shaving, to maintain the wheel-rail system in good condition. In other
words, CBM is important for maintaining the wheel and rail system in good
condition.
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FIGURE 4.14 Curving performance improvement by CBM.<!

The condition of the wheel-rail contact system as it passes through
curves changes from time to time, and on-board monitoring using PQ
monitoring bogies and other commercial trains, as well as ground
monitoring at points where necessary, can help control friction, including
the amount and timing of lubricant and friction modifiers, and maintain
wheel tread and rail head profiles. It is also important to maintain the wheel
tread profile and rail top profile by grinding and other measures to ensure
proper vehicle maintenance and track repair.



These measures help to eliminate harmful phenomena on curves, such as

rail corrugation, while maintaining safe train operation with a low
derailment coefficient, thereby achieving safe curve passing conditions. In
addition, constant monitoring can contribute to safer curve passing by
analysing the big data obtained, which can be fed back to improve the basic
specifications.

NOTE

l.

The train disaster occurred in Japan on 8 March 2000 in Japan. A
commuter train derailed on the transient curve section of 160.1m radius
curve, and crashed against the opposite-direction train, and 5 passengers
were killed. It was the typical flange-climb derailment at low speed
caused by multiple factors.<]
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5.1 /P MONITORING IN URBAN RAILWAYS

5.1.1 DEVELOPMENT OF CONTINUOUS (J/P MONITORING SYSTEM
FOR IN-SERVICE TRAINS

The derailment coefficient (see Chapter 3) changes daily due to changes in
the coefficient of friction between the wheels and the rails. To capture these
changes, it is necessary to measure the PQ of the rolling stock on the
operational line. Previous methods using ‘instrumented wheels’ with strain
gauges and slip-rings or telemeters were difficult to handle and had poor
durability. Research and development therefore began on a new
measurement system without strain gauges and data transmission devices,
using gap sensors on a bogie frame, which could be implemented on a
commercial service train. The new system, called a ‘PQ monitoring bogie’,
was successfully developed as shown in Figure 5.1 [1]. Trains with PQ
monitoring bogies have been running daily on three Tokyo Metro lines as
commercial trains, collecting large amounts of actual rail-wheel contact
data.
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FIGURE 5.1 Measurement mechanism for PQ monitoring bogie.<

The actual condition data collected by the PQ monitoring bogies has
been very useful and important in influencing the implementation of
condition-based maintenance of track and vehicles in the Tokyo Metro
system. Figure 5.2(a) shows the outside rail  @/P values for each pass of
a train on a single curve with a radius of 160 m. As shown in the figure, the
value of  @Q/P changes each time a train passes, but the waveform is
similar. Figure 5.2(b) shows the relationship between the value of @/P
and the value of inside ~ @/P, denoted by  «. Each data point is defined
at the maximum value of  @Q/P in a curve. This figure shows that the
value of  @Q/P is almost proportional to the value of  « and proves that
both @/Pand & vary widely during commercial train operation.
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As shown in Figure 5.3, rail lubricators are attached at the start of sharp
curves. Typically, the outer rail is lubricated from the Gauge Corner (GC) to
prevent flange wear and the inner rail is lubricated from the Field Corner
(FC) to reduce the lateral turning force. Because the direction of lubrication
on the rails and the contact point between the wheel and the rail head are
different, the friction conditions of the four wheels are also different. As a



result, the difference in friction coefficients between the four wheels has a
great influence on cornering dynamics and flange climbing avoidance.
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FIGURE 5.3 Rail lubrication devices attached to the beginning of a curve.d

Figure 5.4(a) shows the relationship between the derailment coefficient

Q/P and the radius of curvature along the whole line. The value of

Q/P increases with increasing curvature, as does the friction of the inner
wheel-rail contact surface, which is influenced by the application of
wayside lubrication. Figure 5.4(b) shows the relationship only on well-
maintained curves. The Q/P values are lower than those for whole
curves, and for curves with a radius greater than 200m, the  Q/P remains
below the safety limit calculated by Nadal’s formula. Tracks on curves
should be maintained to keep  @/P below the safety limit. On curves with
a radius of 200m or less, anti-derailment guards should be used for safety.
In this way, track maintenance based on continuous monitoring by PQ
monitoring bogies can keep tracks in a safer condition.
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5.1.2 METHOD FOR MEASURING TWIST IRREGULARITY WITH A PQ
MONITORING BOGIE

The variation in the derailment coefficient Q/P is closely related to the
variation in the wheel load of the bogie, which can be quantified by the
twist irregularity. In this section, a method for estimating twist irregularities
using a PQ monitoring bogie [2] is explained.

Figure 5.5 shows the wheel load P on a single curve. As shown in the
figure, the twist irregularity of a track greatly influences the fluctuation of
wheel load, especially in transition curves. Vertical displacements collected
by the PQ monitoring bogie between the four axleboxes and the bogie
frame are used to estimate the twist irregularity. Each measured
displacement is denoted in Figure 5.6. The value of bogie twist 7, which is
closely related to the twist irregularity of the track, is described using the
following equation:
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FIGURE 5.5 Wheel load of the leading outside wheel of the bogie (N = 35).d
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FIGURE 5.6 Image of the bogie twist in the monitoring bogie.<
T - %{(z‘glOUt + Z52’Ln) - (ZS].Zn + z320ut)- (5.1)

The calculated results using this equation are shown in Figure 5.7. Even
though the value of wheel load widely changes as shown in Figure 5.5, the



values of T do not change so much. This proves that the estimated value
of T is almost invariant for each train pass and shows high duplicability.

Due to the cancelation effect of each displacement, the value is not affected
by the passenger load factor change.
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FIGURE 5.7 Calculated bogie twist values (N = 35).<

To evaluate the obtained bogie twist with the twist irregularity of the
track, the value measured by a track inspection car is compared with the
value measured by PQ monitoring bogie. Figure 5.8 shows the results of
this comparison. The amplitude of the measured irregularity with a track
inspection car is multiplied by 1.9/2.5 so that the difference in wheel bases,
of which the monitoring bogie is 1.9m and the track inspection car is 2.5m,
can be fairly compared. As shown in Figure 5.8, both waveforms
correspond well to each other throughout the curve. Because the monitoring



bogie produces a measurement every 0.5ms, the resolution along the track
is 1cm when the vehicle is running at 20m/s.
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FIGURE 5.8 Comparison between the twist irregularity with a track
inspection car and the bogie twist of the monitoring bogie.<

5.1.3 TEMPORAL SUBTRACTION ANALYSIS USING A PQ
MONITORING BOGIE

The temporal subtraction processing of derailment coefficients is conducted
using the previously described twist irregularity estimates. Figure 5.9 shows
the waveforms after correction. As shown in the figure, both periods of the
datasets seem to be corrected along the running distance whereas the
amplitude shows fluctuations.
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FIGURE 5.9 Comparison of derailment coefficients after correction.<

Figure 5.10 shows the average values in 2011 and 2012. As can be seen
in the figures, the average tendency shows a difference. To clarify the
tendency of running safety, Figure 5.11 shows the temporal subtraction of
derailment coefficients. As shown in the figure, the value of derailment
coefficient decreases to a maximum of 0.4 due to the application of
lubricant from ground equipment. In this way, by making comparisons
using the estimated torsional irregularity and continuous measurements by
the PQ monitor bogie, it is possible to capture detailed changes in the
derailment coefficient of the track.
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5.1.4 METHOD FOR ESTIMATING THE FRICTION COEFFICIENT
BETWEEN THE FLANGE AND RAIL

When a railway vehicle passes through sharp curves, there is concern about
the flange climbing over the outer rail. Generally, the running safety of the
vehicle against flange climbing is evaluated by the value of Q/P. However,
the ease of flange climbing depends on the friction coefficient between the
rail and leading outside wheel flange of the bogie (in this section, it is
written as ui..). As described by Nadal’s formula, the limit of derailment
coefficient (Q/P).y 1s calculated from ui.:. The friction coefficient is likely
to change dramatically over short spans due to the rail lubricators that
supply grease to rail to prevent rail and wheel wear and the (Q/P),; also



changes. To evaluate the exact running safety of the vehicle quantitatively,

p10w: Must be estimated [3].
Figure 5.12 illustrates the tangential force variation when the friction

coefficient for the outer wheel changes. As can be seen from the figure,
when the friction coefficient for the outer wheel becomes high, the
tangential force increases. In view of this mechanism, we consider the
method of estimating the friction coefficient using the tangential force

obtained by the PQ monitoring bogie’s mono-link, as shown in Figure 5.13.
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FIGURE 5.12 Relationship between the friction coefficient for the outside

wheel and the steering moment.<
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FIGURE 5.13 Bogie for monitoring wheel-rail contact forces.<J

In this section,  Tx; indicates the average value for the inside and
outside wheels of the leading wheelset in the bogie. When  uj,. 1s low,
Tx; becomes small, and when  pi,. 1s high,  Tx; becomes large. To



grasp the relationships between the friction coefficient and the contact
forces, multibody dynamics simulations were carried out using SIMPACK,
a software package extensively used in the railway field, and a vehicle
model running on a sharp curve.  pi. and the friction coefficient for
other wheels  u.mers Separately change from 0.1 to 0.7 in steps of 0.1, and
Figure 5.14 shows the results under 49 conditions. The values are steady in
the circular curve.

Hlout [_]
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FIGURE 5.14 Lookup chart for estimating the friction coefficient py,,,.<]

The graph shows the relationships between the estimated  p,,,, Input
x and  Tx, normalized by  Py,. The graph can be considered as a
look-up table and can be defined for any curve radius. From the look-up
table, it is possible to estimate the value of  py,,, from  xand Ty /Py,
, that can be measured by the monitoring bogie. The limit of derailment
coefficient  (Q/P)., also can be obtained from the estimated  u,,,, based



on Nadal’s formula. Additionally, the Flange Climb Index (FCI) defined by
dividing the measured  @Q/P by the estimated  (Q/P),; can be obtained.

Figure 5.15 shows the overall flow of the estimation regarding running
safety with a PQ monitoring bogie.
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FIGURE 5.15 Flow of analysis of running safety against flange climbing.<}
Figure 5.16 shows two examples of the derailment coefficient  Q/P,

xand Ty /Pyu,. The average value of each is also shown. These were
collected by a monitoring bogie on a sharp curve with a radius of 160m.
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FIGURE 5.16 Examples of contact forces collected by a monitoring bogie.<



Figure 5.17 shows ulout estimated by the method from the above inputs,
and the FCI calculated from the measured  Q/P and estimated  (Q/P) .
In both examples, the value of  « is almost the same. This means that the
value of the friction coefficient for the leading inner wheel is roughly the
same in both cases. In case 2, the estimated  pi.. 1S higher than in case 1
because  Txi/Pu, 1s higher than in case 1. A high  Tx,/Py, value means
that the steering force 1s high. A high steering force reduces the derailment
coefficient, so in case 2, the derailment coefficient is small. Although the
derailment coefficient is smaller in case 2, the value of the FCI is the same
as in case 1 because  (Q/P).y 1s also low due to the low  pi.u. In the
above results, because  (Q/P).y can be obtained by estimation of  piou,
a more accurate analysis of the running safety of the vehicle against flange

climb derailment, which could not be done with the derailment coefficient
alone, can be made.
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FIGURE 5.17 Examples of estimation of results u1,. and the FC1.<1
5.2 ESTIMATION OF TRACK IRREGULARITIES

5.2.1 MODEL-BASED APPROACH

This section describes a method for estimating track longitudinal level
irregularities, which causes a vibratory input to the car body, from the
vertical car body accelerations using a KF; which is a typical state



estimation method. To verify the validity of the estimation method, the
results of estimating the track longitudinal level irregularity of a track using
the measured vertical accelerations of the car body on a regional railway are
shown [4].

5.2.1.1 Vehicle Model

In this study, a vehicle model representing the vertical motion of railway
vehicles is used to construct the KF. The vehicle model is shown in Figure
5.18.

FIGURE 5.18 6-DOF vehicle model.&l

The model is a single-vehicle linear model that is assumed to run on a
straight track, and it has six DOFs. There are two DOFs (vertical bounce
and pitch) for the car body, two DOFs (vertical bounce and pitch) for the
front bogie and two DOFs (vertical bounce and pitch) for the rear bogie (see
section 2.4.1).

5.2.1.2 State Space Model



In track condition monitoring, the complexity and cost of the system would
be reduced if the track condition could be determined solely from the
motion of the railway car body. Therefore, a KF is constructed using only
the information of the car body motion (in this case, bounce and pitching
motion).

Equation (2.40) contains eight external force elements. Namely, the track
displacements with respect to each of the four axles and their velocities.
However, these eight inputs cannot be determined solely from the motion of
the bogie. This is because information on the pitching motion of the bogie
is not acquired.

The track geometry is expressed by the following state equation:
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where z(k) is the track geometry and w(k — 1) is white Gaussian noise.

Equation (5.2) is simply a model of track displacements moving with
time and does not include vehicle dynamics. Thus, the vehicle dynamics is
expressed by the following measurement equation:

| | z(k—1)
() = | BO) A1) e B(E) olb).
z(k—L+1)
O o []

(5.3)

where z(k) 1s the car body vertical acceleration and v(k) 1s the sensor noise.

The vehicle model is expressed by the measurement equation as a
convolution integral with an impulse response, as shown in Equation (5.3),
where 4 in  H is the unit impulse response of the car body vertical
acceleration to the track geometry and L is the total number of such
responses. The above state-space model allows the track geometry to be
sequentially estimated from the vertical acceleration of the car body using
the KF.

The impulse response of the vertical acceleration of the car body used in
the measurement matrix varies with the travelling speed. In principle, the
impulse response can be recalculated each time the travelling speed
changes, but this is not practical in terms of computational load and
efficiency.



Therefore, in this method, the impulse response is calculated in advance
at each specified speed, and the impulse response corresponding to the
speed at that time i1s used in the sequential estimation by the KF (Figure
5.19). In this study, the impulse responses were calculated using a vehicle
model and used for numerical simulation.
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FIGURE 5.19 Selection of the impulse response for different speeds.<

For linear systems such as the one treated here, the time response of the
vehicle model can be calculated by using a finite impulse response filter. In
other words, if the impulse response  h(r) of the vehicle model is known,
the output (vertical acceleration of the car body) with respect to the input
(track geometry) can be calculated by the following convolution integral
and the vehicle model can be expressed by the measurement equation as in
Equation (5.4):

2(t) = h(1)z(t — 7)dr. (5-4)



The unit impulse response of the vertical acceleration of the car body can be
calculated by applying a unit impulse signal to the vehicle model. As an
example, the impulse response for a travelling speed of 60km/h, assuming a
regional railway vehicle, 1s shown in Figure 5.20. The measurement point
for the impulse response was just above the front bogie.
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FIGURE 5.20 Impulse input and response (at }'= 60km/h).d

5.2.1.3 Configuration of the Kalman Filter

The KF is used to construct an algorithm for estimating track geometry
from the vertical acceleration of the car body.
The time update algorithm is



Z(klk—1) = FZ(k — 1|k — 1), (5.5)
P(klk—1)=FP(k—1lk—1)FT + LQL". (5.6)
The measurement update algorithm is
K(k) = P(klk —1)HTS(k|k — 1), (5.7)
Z(k|k) = Z(k|k — 1) + K(k)2(k|k — 1), (5.8)
P(k|k) = [I — K(k)H]P(k|k — 1), (5.9)

where

S(k|k — 1) = HP(k|k — 1)HT + R,
(5.10)
2(klk — 1) = 2(k) — Hz(k|k — 1) , (5.11)

and the state transition matrix F, the matrix L and the measurement matrix
H are given in Equations (5.2) and (5.3). P is the error covariance matrix, K
is the Kalman gain, @ is the covariance matrix for the system noise and R is
the covariance matrix for the sensor noise.

5.2.1.4 Methods for Assessing Track Irregularities

Generally, track irregularities are measured and controlled by the 10-m
chord versine method. In this method, a 10-m string is stretched over the
rail and the separation between the rail and the string at its centre is
measured (Figure 5.21) [4]. After the track geometry is estimated, it is then
converted into longitudinal level irregularity by the 10-m chord versine
method and evaluated.



FIGURE 5.21 10-m chord versine method.<]

The equation for calculating the longitudinal level irregularity from the
track geometry is given below, where a(z) 1s the longitudinal level

irregularity from the 10-m chord versine method, b(z) 1s the track
geometry and x is the distance in metres.

a(z) = b(z) — 2] (512)

5.2.1.5 Evaluation of Estimation Methods by Simulation

To confirm the effectiveness of the track irregularity estimation method
described above, the results of an estimation simulation on a regional
railway are described. The simulation was carried out according to the
following procedure:

e Track geometry data (wavelength > 6m) simulating the spatial
frequency characteristics of an actual track are created. Also, the
speed data is set to simulate typical train operation.

e The track geometry and speed data are inputted into a vehicle model,
and the vertical acceleration of the car body in the vertical direction
just above the front bogie is calculated. Noise with a normal
distribution is added to the vertical acceleration of the car body,
which is then used as the measurement value.



e The track geometry is estimated from the measured vertical
acceleration of the car body and the set velocity data using a KF.

e The track geometry and the estimated track geometry are each
converted into longitudinal level irregularity by the 10-m chord
versine method, and the estimation error in the 10-m chord versine
method is determined. Evaluation is then carried out on the
estimation accuracy of the results to confirm the validity of the
method.

5.2.1.6 Generation of Vertical Acceleration of the Car Body

As no measured track geometry data was available, track geometry data
(wavelength > 6m) was generated from the spatial frequency characteristics
of an actual track by generating random numbers. The speed profile was set
assuming a single section of a typical regional railway.

The vertical acceleration of the car body just above the front bogie
(calculated with track geometry and speed data input to the vehicle model)
is shown in Figure 5.22. Table 5.1 shows the parameters of the vehicle
model used in the calculations.
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FIGURE 5.22 Vehicle speed, track geometry and car body vertical
acceleration.<!

TABLE 5.1

Vehicle parameters<]
Symbol  Description Unit Value
m, Car body mass kg 25,000
my Bogie mass kg 3100
I, Car body pitch inertia kgm® 856,940
I, Bogie pitch inertia kgm®  3417.8
21, Car body base m 14.1

21, Wheel base m 2.1



Symbol  Description Unit Value

k, Primary suspension vertical stiffness kN/m 2120
ks Secondary suspension vertical stiffness kN/m 400
¢ Primary suspension vertical damping kNs/m 39.2
c, Secondary suspension vertical damping kNs/m 96

5.2.1.7 Assessment of Estimation Results and Estimation Accuracy

The estimated track geometry, the estimated longitudinal level irregularity
using the 10-m chord versine method and the estimation error in the 10-m
chord method are shown in Figure 5.23. The variance of the system noise
w(k) and the measurement noise w»(k) in the estimation were set to

02 =1x 10"'m? and o2 = 5 x 10~3(m/s2)?, respectively.
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FIGURE 5.23 Estimation result of track geometry, estimated longitudinal-
level irregularity and the estimation error in longitudinal-level
irregularity.<]

From Figure 5.23, the estimated track geometry shows differences
caused by the fact that the long-wavelength component cannot be estimated.
This may be because the calculated vertical acceleration of the car body at
the set travelling speed does not include a long-wavelength component for
estimating the track geometry.



However, good accuracy estimation results were obtained for
longitudinal level irregularities converted by the 10-m chord versine
method. As the 10-m chord versine method is used for actual track
maintenance and management in regional railways (even if track geometry
is not available) the estimation of the longitudinal level irregularity by this
method is useful for track condition monitoring.

The Sprague—Geers metric [3], one of the Magnitude-Phase-Composite
(MPC) metrics, was used to evaluate the estimation accuracy by comparing
the estimated longitudinal level irregularity with the measured values. An
MPC metric is a method for evaluating the correlation between two
waveforms by focusing on the amplitude and phase of the waveforms. The
equations for calculating each metric are shown below.

_ [ XE 1 (513
M=y <ar —1,GD

P = Lleos—l—2om

= T@gzm?’(S.M)
C=+vVM2+ P2 (5.15)

where M is the amplitude characteristic, P is the phase characteristic and ¢
is the comprehensive evaluation index combining M and P. The closer each
value i1s to 0, the higher the correlation with the measured value. In
addition, e is the estimated value and m is the true (measured) value. The
results of applying the Sprague—Geers metric to the estimated results of
longitudinal level irregularity are shown in Table 5.2. Table 5.2 shows that
each value is close to zero, indicating that there is a high correlation
between the amplitude and phase.

TABLE 5.2
Evaluation result for the Sprague—Geers metric<

Parameter M P C




Parameter M P C
Value 0.01 0.03 0.03

5.2.1.8 Field Test

An on-board sensing device was installed next to the driver’s cab of an in-
service train, and a field test was conducted to measure car body vibration
(Figure 5.24).

In-service vehicle Onboard sensing device

= —

FIGURE 5.24 On-board sensing device.<]

An onboard sensing device consisting of a three-axis accelerometer, a
rate gyro and a GNSS receiver for identifying the vehicle’s position was
installed in the upper part of the front of the vehicle body to measure the
vehicle vibration (Figure 5.24). The sampling frequency of the measured
data was 82Hz. This device was powered by the vehicle and continuously
recorded the vehicle vibration and position during operation.

The data used here was obtained by using the track condition monitoring
system shown in Figure 5.25. The collected car body vibration data was
transmitted to a server via a mobile phone network. A diagnosis based on
the car body vibration data transmitted to the server was undertaken.
Continuous monitoring of the track condition using this system enabled the
detection of track faults.
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FIGURE 5.25 Track condition monitoring system.<!

The line for which the data were measured is a regional railway in the
Tohoku region of Japan with the following characteristics: line length of
30.5km, rail gauge of 1067mm, 17 stations and non-electrified single-track
type. The measurement dates were 5 February 2016, 20 May 2016, 24 June
2016 and 22 July 2016. The measurement items were vehicle position
information, travelling speed, longitudinal acceleration, vertical
acceleration, lateral acceleration and roll angular velocity. Although
alignment and cross level irregularity can be evaluated from the
measurement data, only longitudinal level irregularity was evaluated in this
experiment.

5.2.1.9 Methods for Evaluating Track Conditions

The procedure for evaluating track conditions in this experiment is
described below.



e Calculate the Root Mean Square (RMS) values from the measured
vertical acceleration of the car body. From the RMS values of the
vertical acceleration of the car body in all sections, extract the
sections with the highest RMS values as the most significant for
further attention.

e Use the KF to estimate the track geometry from the travelling speed
and vertical acceleration of the car body in the extracted sections
where the RMS values are significant. Convert the estimated track
geometry to longitudinal level irregularity using the 10-m chord
versine method.

e Compare the longitudinal level irregularity measured by the track
inspection vehicle with the estimated longitudinal level irregularity to
evaluate the accuracy of the estimation.

The measured travelling speed, vertical acceleration of the car body and
RMS values calculated from the vertical acceleration of the car body are
shown in Figure 5.26. Track section GH was selected because it includes
the highest RMS values for the vertical acceleration of the car body among
all sections.
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FIGURE 5.26 Measured car body vertical acceleration on a regional

railway.d



5.2.1.10 Track Irregularity Estimation Results

Longitudinal level irregularities were estimated for the distances 13.7km to
13.8km from the start of the GH section using a KF. The data used for the
estimation were from three runs on 20 May 2016 and 24 June 2016, for
comparison with the track inspection vehicle data obtained on 30 May
2016. The travelling speeds and car body vertical acceleration used for the
estimation are shown in Figure 5.27.
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FIGURE 5.27 Measurement data for section GH.<l

The estimated longitudinal level irregularities using the 10-m chord
versine method are shown in Figure 5.28. The variance of the system noise
w, and the measurement noise v, 1n the estimation was



o2 =1x10"'m? and o2 =1x10"2(m/s?)’, respectively. The estimated
longitudinal level irregularity is the average of the left and right rails.

—— First run (2016/05/20) — Second run (2016/06/24)
= —— Third run (2016/06/24)
g 30 ; : ; ,
g
]
=
8
=11]
g 137 13.75 13.8
Distance[km]
— First run (2016/05/20)  — Second run (2016/06/24)
— Third run (2016/06/24) —— Average

b W
o o
T

)
S

1373 13.8
Distance[km]

Track irregularity [mm]
o
HoSooo
J

FIGURE 5.28 Results of track geometry estimation for section GH.<

From Figure 5.27, no significant differences were found in the measured
travelling speed and vertical acceleration of the car body for the three runs,
which suggests that the effect of the difference in travelling speed on the
vertical acceleration of the car body is small. From Figure 5.28, no
significant differences were also seen in the estimation results of the three
runs. We can also expect that the estimation accuracy will be improved by
averaging the results of multiple runs.

A comparison of the estimated longitudinal level irregularities and the
longitudinal level irregularities measured by the track inspection car is



shown in Figure 5.29. The estimation accuracy was evaluated using the
Sprague—Geers metric.
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FIGURE 5.29 Comparison of estimated results with measurements obtained
by track inspection vehicles on section GH.<!

The results shown in Table 5.3 show that the accuracy of the estimates
for all three runs is almost the same, with significant longitudinal level
irregularities of around 25mm at 13.76km.

TABLE 5.3

Evaluation of estimation results<l
Run M P C
First run (2016/05/20) -0.22 0.23 0.32
Second run (2016/06/24) -0.13 0.21 0.25
Third run (2016/06/24) -0.22 0.19 0.29
Average -0.20 0.20 0.28

5.2.2 DATA-DRIVEN APPROACH

In this section, a data-driven approach is introduced for estimating track
irregularities from measured car body vibration for track management [6].
The correlation between track irregularity and car body vibration was
analysed using a multibody dynamics simulation of rail vehicles. Gaussian
process regression [7] was applied to the track irregularity and car body



vibration data obtained from the simulation, and a method was developed to
estimate the track irregularities from the constructed regression model. The
longitudinal level, alignment and cross level irregularities were estimated
from the measured car body vibrations and travelling speeds on a regional
railway, and the results were compared with the actual track irregularity
data.

The track irregularity estimation procedure is shown in Figures 5.30 and
5.31 and given below:
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FIGURE 5.30 Track irregularity estimation procedure.<!
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FIGURE 5.31 Dataset generation used for regression analysis.<]

e A railway vehicle model is prepared with multibody dynamics.

(10m-chord versine)



e From the track irregularity Power Spectral Density (PSD), track
geometries for the profile, alignment and cross level are generated.

e The longitudinal level and alignment irregularities are calculated
using the 10-m chord versine method.

e The vehicle model is run on a track with the generated track
geometries, and the vertical acceleration, lateral acceleration and roll
rate are calculated.

e A dataset is created with the calculated maximum value of the car
body vibration as input =z and track irregularity as output y.

e GPR is applied to the dataset to create a regression model.

e The measured car body vibration of the actual vehicle is input into
the constructed regression model to statistically estimate the track
irregularity.

5.2.2.1 Generation of Track Irregularity and Car Body Vibration
5.2.2.1.1 Vehicle Model

The simulation model must output the vertical acceleration, lateral
acceleration and roll rate of the car body with the track geometry, that is,
profile, alignment and cross level, as track displacement. Therefore, a
railway vehicle model with multibody dynamics is prepared, and a
representative simulation is conducted. The dynamic simulations are per-
formed using SIMPACK. Figure 5.32 shows the constructed vehicle model.
The vehicle model comprises 7 rigid bodies (1 car body, 2 bogies and 4
wheelsets), each of which has 6 DOFs, resulting in a total of 42 DOFs. The
car body, bogie and wheelset are connected and supported by spring and
damper elements. By inputting the track geometry to the vehicle model and
running the simulation, the vertical acceleration, lateral acceleration and roll
rate of the vehicle, which are the vehicle motions just above the centre of
the front bogie, are calculated.
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FIGURE 5.32 42-DOF vehicle model.d

The vehicle parameters used for the simulation are listed in Table 5.4,
and they were set to match the car body vibration measured on a regional
railway. The running distance was set to a straight section of 1000m, and
the sampling frequency was set to 100Hz.

TABLE 5.4

Vehicle parameters<!
Description Unit Value
Car body mass kg 25,000
Bogie mass kg 3100
Wheelset mass kg 1500
Car body inertia about z-axis kgm2 49,000
Car body inertia about y-axis kgm2 900,000
Car body inertia about z-axis kgm2 841,000
Bogie inertia about z-axis kgm® 2511

Bogie inertia about y-axis kgm2 1743.75



Description Unit Value

Bogie inertia about z-axis kgm2 1743.75
Wheelset inertia about z-axis kgm2 735
Wheelset inertia about y-axis kgm2 93.75
Wheelset inertia about z-axis kgm2 735
Car body base m 14
Wheel base m 2.1
Gauge m 1.067
Wheel radius m 0.43
Primary suspension vertical stiffness kN/m 12,000
Secondary suspension vertical stiffness kN/m 400
Primary suspension lateral stiffness kN/m 6000
Secondary suspension lateral stiffness kN/m 150
Primary suspension longitudinal stiffness kN/m 8000
Secondary suspension longitudinal stiffness kN/m 1000
Primary suspension vertical damping kNs/m 40
Secondary suspension vertical damping kNs/m 14
Primary suspension lateral damping kNs/m 40
Secondary suspension lateral damping kNs/m 180
Primary suspension longitudinal damping kNs/m 40
Secondary suspension longitudinal damping kNs/m 14

5.2.2.1.2 Track Model

The track PSD spectrum is widely used for dynamic simulations of railway
vehicles [8, 9, 10]. The track PSD spectrum, characterised by a single-sided
spectrum, is expressed as follows:

Profile:

A,02?
Sp() = oty - (516)



Alignment:

A 022
Sa('Q) = Q) (224022 ¢ (5.17)

Cross level:

(4.92/a%) 22
(224-022)($224-022) (224022

Se(92) = -, (5.18)

where 5,(2),58.(2) and S.(2) are the PSDs of the track geometry

(mm?2/(rad/m)); @ is the spatial angular frequency (rad/m); 2., 2, and 2, are

the critical spatial angular frequencies (rad/m); « is half of the nominal
rolling circle distance of the wheel, and 4,,4, and A, are the roughness

coefficients for the track geometry.
Parameters for the track PSD model are listed in Table 5.5.

TABLE 5.5

Track PSD model parameters and their interpretation<

Parameter Very Good Baseline Very Poor
A, 1x107° 10 x 107° 80 x 107°
A, 0.5x107° 5x107° 40 x 1075
A, 0.1x10°° 1x10°° 35 x 107
2. (rad /m) 0.8 0.8 0.8

2, (rad/m) 0.02 0.02 0.02

0, (rad/m) 0.01 0.01 0.01

The roughness coefficients for the PSD functions for each track
irregularity, 4,, A, and A, are varied to generate 12 tracks from
good to degraded conditions. The longitudinal level and cross level
roughness coefficients, 4, and A, respectively, are usually the same,
but they are listed separately to allow for independent assessment of track



irregularity types. As a representative example, the PSDs for the best,
nominal and worst conditions of the profile, alignment and cross level of
the track geometry are shown in Figure 5.33, and the track geometry

generated by the PSDs is shown in Figure 5.34.
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FIGURE 5.33 PSDs of the track geometry.d
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FIGURE 5.34 Generated track geometry.<

The track geometry shown in Figure 5.34 was converted to track
irregularities using the 10-m chord versine method by applying Equation
(5.12), and regression analysis was performed.



5.2.2.2 Regression Analysis of Car Body Vibration and Track
Irregularity

5.2.2.2.1 Gaussian Process Regression

Here the relationship between the car body vibration and track irregularity
1s examined using GPR, which is a nonlinear regression method. GPR is a
nonparametric Bayesian approach to nonlinear regression problems that can
provide uncertainty in predictions. GPR defines two elements: training data
comprising pairs of input and output y and =z, kernel function k(z,z’)
providing the covariance of the Gaussian distribution, which is the
similarity between inputs =z and z'.

Given the training data 2 = {(z1,%1), -, (zn,yn)}, the output of the test
data for a new input are expressed as follows:

p(y*, z, @) = N(k*TK_ly, kxx — kZK_lk*),

(5.19)
where
| k(xhwl)a k(mlwa) k(ml,mN) I
k(.’B2,.’B1), k($2,x2) k(CBQ,.’BN)
K = :
‘k(mN7m1)7 k(mN7m2) k(mN,mN)_
ke = [k(z",21),k(z",22), -, k(z",2n)]
k**: k(x*,x*)’
T
y = [yl,y2,"',yN] .

A radial basis function kernel and white kernel 1s used, described as:



k(xz,z') = 64 exp(— |m_af,2) + 030(x, z'), (5.20)

where 6;,6, and ¢; are hyper-parameters and ¢ is the Kronecker delta, which
1S 1 when z = 2’ and 0 when z # '

The white kernel [second term in Equation (5.20)] is a kernel function
on the magnitude of noise in the objective variable and is useful when the
dataset contains noise. In Equation (5.20), the hyper-parameters

(61,602 and 63) control the extent to which the data are similar. Optimising
the hyper-parameters therefore improves the performance of fitting to the
measured data. The hyper-parameters are optimised by the maximum-
likelihood estimation method.

Ely' 2", 9] = kF K 'y, (5.21) :
VIy' 2", 9] = ke — KTK k. (5.22)

Figure 5.35 shows the GPR results for the vertical acceleration and
longitudinal level irregularity, lateral acceleration and alignment
irregularity, and roll rate and cross level irregularity. The results of the
linear regression without an intercept are also shown for comparison. Figure
5.35 shows that the characteristics are different between regions with a
small acceleration and roll rate (good track condition) and those with a large
acceleration and roll rate (poor track condition). The variance in the data for
the longitudinal level, alignment and cross level irregularities is large for
the poor track condition. Nonlinearity appears in the GPR regression curve
in these regions, and the difference from the regression line suggests that
GPR is a more effective regression method. To adapt to the actual line, it 1s
necessary to make estimates using the measurement data. Therefore, it is
necessary to generate a new dataset by adding the measurement data to the
dataset generated by the simulation and then make the estimates.
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FIGURE 5.35 Results of GPR.J

5.2.2.3 Application to Track Condition Monitoring in a Regional
Railway

Figure 5.36 shows the method for estimating track irregularities using GPR.
First, the correlation between the car body vibration and track irregularities
corresponding to the travelling speed is calculated in advance using GPR.
Next, the maximum amplitude values of the vertical acceleration, lateral
acceleration and roll rate measured by the track condition monitoring
system for each 10-m-long section and the average travelling speed are
calculated and used as inputs to the estimator. The estimator outputs
longitudinal level, alignment and cross level irregularities corresponding to
the travelling speed along with a 16 confidence region.
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FIGURE 5.36 Track irregularity estimation procedure using a GPR
classifier.<l

Figure 5.37 indicates that most of the longitudinal level, alignment and
cross level irregularities estimated using the GPR method are within the

1o confidence region, confirming the effectiveness of this method.

However, in some sections, the errors between the estimated results and
measured data are large. This may be due to factors other than the track
irregularities.
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Comparison of the estimation results from GPR with those from linear
regression shows no significant differences for longitudinal level
irregularity and cross level irregularity. Conversely, large differences can be
observed in alignment irregularities. This can be understood from the fact
that there are large differences between linear regression and GPR for
alignment irregularities. GPR also has the advantage that, unlike linear
regression, it can present confidence regions at the same time.

In Figure 5.37, there are points where the estimated and measured values
differ significantly, but such points may be affected by factors other than
track irregularities. Therefore, it is considered that further useful
information for maintenance could be obtained by investigating these
locations.

The data-driven approach presented here is an estimation method that is
simpler than analytical or numerical models, and so it has the potential to be
applied to many regional railways. However, the estimation accuracy
depends on the amount of data collected and the regression method used, so
further investigation of the estimation accuracy is needed. This chapter
presents a basic investigation of the applicability of the data-driven
approach, and in the future, it will be necessary to investigate the amount of
data collected and the regression method used from the perspective of
estimation accuracy.

5.3 LOW-ADHESION DETECTION IN THE WHEEL—-RAIL
INTERFACE

5.3.1 Low ADHESION BACKGROUND AND PHYSICS

Low adhesion in railway systems is a significant issue often misunderstood
by industry and general public alike. There is currently a lack of robust
information about the changing picture of areas of low adhesion with
respect to short term trends (over a daily period) and macro trends (across
the seasons). A full understanding of the contemporary railhead condition



across a network is currently unfeasible with the level of technology
deployed.

The efficiency of rail travel is principally due to the minimal
deformation and therefore small contact patches formed between a steel
wheel on a steel rail rolling contact, but this fundamental property exposes
risks that relatively minor contaminants within this area can have
significant consequences. Low adhesion primarily arises due to this
phenomenon, with contaminants forming a so-called ‘third body layer’.
These can be made of:

e Leaves and organic matter: During autumn, falling leaves can be
crushed under the wheels, forming a slick, slippery substance.

e Moisture, condensation and ‘micro-wetting’: Rain, dew, or
condensation can create a thin water film, further exacerbated by oil
or grease.

e Contaminants from railway operations: Residues from braking
systems, such as oil, and iron oxides, contribute to a reduction in
friction.

The effects of low adhesion manifest as wheel slip events in traction or,
perhaps more significantly, wheel slide in braking that can lead to increased
operational risks such as station stops being missed or SPAD (Signals
Passed At Danger) events. Beyond traction and braking, low adhesion
impacts the guidance dynamics of the vehicle as the creep forces essential
for stability are affected by the changing coefficient of friction. This can
lead to increased wear and tear on both the wheel and the railhead resulting
in more frequent maintenance and higher operational costs. Typical
mitigation activity is often the instruction to undertake defensive driving
techniques over large (and potentially unaffected) parts of the network, that
in turn cause disruption to timetabling. In the UK, it has been estimated that
low adhesion events can result in annual costs exceeding £350 million due
to delays, damage to equipment, and increased maintenance requirements
such as rail head cleaning. Fundamental methods for identifying adhesion



events from wheel slip (under traction) or wheel slide (under braking) exist
[11, 12] but methods for monitoring low adhesion across a rail network is
an outstanding research challenge for the rail industry.

5.3.2 MODEL-BASED APPROACHES TO LOW ADHESION
ESTIMATION

A change in the coefficient of friction directly results in a change in the
interaction mechanisms between the wheel and the rail. This manifests as
changes in both the traction and braking dynamic, but also in the guidance
and stability aspects of vehicle motion. The principle behind adhesion
estimation in this section is to measure the inertial properties of the moving
parts of the running gear in the key guidance modes of motion, and process
this information to attribute changing properties to adhesion changes. This
section explores the use of a Kalman filter implementation that can estimate
the contact force in the wheel/rail interface using a linear suspension model
in the filter formulation.

The Kalman-Bucy is a mature filtering methodology that has been used
for a wide variety of applications. There are discrete time [13] and
continuous time [14] variants of this algorithm. The former will be how the
method will be applied in the long term, but the latter is demonstrated here
due to the continuous nature of the system dynamics. The fundamental state
space equations of the system dynamics can be defined as

& = Ax + Bu + B,w ,
(5.23)
z=Czx+ Du+ D,w+ v, (524)

where u are the known inputs, @ is the process noise, and & is the
measurement noise. The minimisation of the steady-state error covariance



P = tlggloE[{w —z" Hx — a:A}T].

(5.25)

The solution is of the form

Z=FZ+Gu+K(z— C%— Du) .
(5.26)

The Kalman filter gain K is determined through a Riccati equation to be
K= (PCT + N)R—1 (5.27)

where
R=R+HN+NTHT + HQHT , (5.28)

N =G(QH" +N), (529

andE[@] = E[V] = 0, E[@a"] = Q, E[t"] = R, E[@i"] =

The contact force is estimated included by augmenting the state matrix
to include ‘Force’ as an unmeasured variable which acts on the system
states. The model-based filter therefore requires:

e An accurate linearised suspension model. The dynamic equations that
represent the guidance motion of the vehicle in terms of suspension
parameters is characterised into a state-space and populates the
Matrices 4, B,C and D



e The tuning of the matrices Q and R. The former represents the user’s
assumption on the certainty of the state equation, with the later the
assumption on the certainty of the measurement. They represent a
trade-off where only one can be minimised at a time, namely, you
either trust the model and the measurement equally, or one more than
the other.

The guidance dynamics of a conical wheelset can be thought of as two
interacting principles: the yaw dynamics and the lateral dynamics. The
basic principle of which being that a yaw angle will cause the wheelset to
move laterally, and that a lateral movement will create a yaw movement due
to the increasing conicity. An excellent explanation of these dynamics can
be found in [15].

This principal motion can be expressed by these two simplified, coupled
equations:

mwyw - Fsusp + Fconta (530)

Jwgbw — Msusp + Mconty (531)

where m,, 1S the mass of the wheelset, v, 1s the lateral movement of the
wheelset, F.., are the lateral suspension forces, F.,: are the wheel/rail
contact forces, J, 1s the yaw moment of inertia, ¢, is the yaw angle of the
wheelset, M., 1s the moments created by the suspension in yaw and M., 1S
the contact forces related into yaw moments.

The ‘knowns’ in the equations are related to the suspension
characteristics and the masses. The ‘unknowns’ are the contact conditions.
The Kalman filter can be formed in such a way to estimate these
‘unknowns’ by using a linear model of the suspension systems to provide
an insight to the numerical quantities of  F;,,,, and resultant estimation of

F... as an unmeasured state provides an analogy of adhesion conditions.

There are two key approaches to generating a linear model of the
suspension arrangement: through first principles analysis whereby the



suspension system is expressed as interacting dynamic equations
representing the geometry and interacting forces; or via systems
identification techniques where the dynamic equations are attributed
automatically by data analysis. Both methods are equally applicable if a
validated linear model is obtained.

The formulation of the linear model here is based on a plan-view half
vehicle model. This can be thought of as lumped masses representing the
wheelsets, bogie and vehicle body connected via stiffness and damping
components at certain physical positions between the bodies, and
constrained to move only in the horizontal plane. Analysis of this geometric
arrangement leads to linear equations of motion describing the suspension
movement due to the contact forces acting on the wheelsets.

It is helpful in this case study to arrange these into a state space
description of the form:

t = Ax + B,w, (5.32)
z=Czx,(5.33)

where z 1s a vector that contains the system states (principally the position
and velocity of the lumped masses in the lateral and yaw motions). 4 is a
square matrix that contains a description of the stiffness and damping
components within the system, formed from the Newton/Euler analysis of
the suspension. @ contains a vector of the track disturbances which is
mapped to the states via the matrix B,, essentially representing the forces
acting on the wheelset. The suspension system has no controlled input so
the usual Bu term is omitted. - is a vector that contains the measured
variables of the system and ¢ maps the states to these measurements.

The choice of states  z such as to ease the mapping of state to
measurement and are formed in the following way. Consider the primary
suspension connection of the bogie frame to the wheelset. The forces
generated across this suspension are a result of the differential position and
velocity between the two bodies as a result of compression/extension of



springs and the excitation of dampers. The movement of the primary
suspension can be described by the variables within the vector — zy;

(ignoring longitudinal modes):

_ _ . . 4T
Tyt = | YrB —YFF UrB — UFF YFB — YFF Yrp — YrF)
(5.34)

where y represents the absolute lateral position of the leading (front) bogie
(subscript FB) and the leading (front) wheelset (subscript FF), and v 1s the
absolute angle in radians. It is assumed both y and v are measured from a

shared frame of reference such as the track centre line.
This expression can be simplified by replacing terms such as  ypp — ypr

with equivalent term  yspr to provide the form:

. . T
zir = [ysrr YsrF Yspp Vopw) - (5:35)

Similarly for the trailing (rear) wheelset:

: : T
L fr = [’yéFR YsSFR  YsFR ¢5FR] . (5.36)

And for the leading bogie:

: -
zp = yors Ysre orp Yors] > (5-37)

where both ysp5 and 45 are the differential position of the bogie and the

vehicle.
The states of the half vehicle model are therefore:

| 2s7]
=1 Tp| -(5.38)
2]



The vector @ comprises of the unmeasured disturbances into the system,

which in this case will be considered as the contact forces acting on the
wheelset. This can be defined as:

@ = [Fyrr M.pr Fyrr M.pg),(5.39)

where F, 1s the lateral contact force acting on the leading (front) or trailing
(rear) wheelset of the leading (front) bogie (subscript FF, FR) and M, is the
resultant moment on the wheelset from the longitudinal contact forces.

The matrices A and B, are completed by considering the
suspension arrangement by a Newton/Euler approach and arranging the
resultant equations of motion accordingly. The derivative of the state vector

¢ contains either differential velocities (which are directly mapped to
existing states) or acceleration terms that resolve from the equations of
motion. ¢ is formed to map the state definitions to measurements.

The Kalman Bucy filter is typically arranged as a closed loop observer
that updates state estimates by using a linear system model to approximate
the changing values, then adjusts these approximations based on any errors
observed between the measured and estimated outputs. As there are no
controlled inputs to the system, the equation set becomes:

Z = A% + K(z - C%) , (5.40)

where z represents the state estimates.

To estimate the contact forces, the states of the system are augmented to
include the unknown input variables as system states, essentially defining
them as unmeasured state variables. The augmented state vector becomes:



Fyrr

T = . (5.41)
M.rF

FyFR
- M.rr

The process of tuning is iterative but due to the causality of state
estimation this can be done in stages. Adjustments to the weighting
matrices are made to assign greater certainty to the measured states until the
filter accurately represents these variables, by comparison against observed
and measured outputs. It is important that these states show good agreement
as they form the basis for the estimation of the creep force. Following this,
adjustments can be made to the weighting relating to the contact forces (by
ensuring they have less ‘certainty’ from measurement and rely on the
obtained mathematical model) until the filter best approximates these. The
resultant order of the estimator is quite large, so it is useful to group
weightings to have the same values for simplicity in tuning.

The filter assumes that all the state variables are output as a measured set

z. To estimate the contact forces, the state variable set is augmented to
include the forces and moments acting on the wheelsets, and the filter is
tuned to estimate these augmented variables, essentially forming a
disturbance estimator. For example, in a quarter vehicle model, using only a
primary suspension as in [16], the measured variables are the wheelset
lateral and yaw positions and velocities:

B
z= [yFFayFFawFFa"»bFF} :

(5.42)



The subscript FF was used to denote the leading (front) wheelset of the
leading (front) bogie.

The augmented state matrix includes the lateral contact forces  F, and
the resultant moment acting on the wheelset about the ‘z’ axis due to the
different in longitudinal forces on each contact point of the wheelset  1.:

. T
T, = |Yrr, Yrr, VFF, YrF, Fyppy M,,,.| . (5.43)

The A and B matrices therefore contain a dynamic model of the suspension
system formed through first principal analysis or machine learning.

Model-based methods such as this typically focus on contact force
estimation as the filter is unable to differentiate between forces due to
creep, and those due to the geometric interaction of the wheel and rail [17].
However, the estimated forces provide extra information from which the
coefficient of friction can be inferred by post processing the force
estimation and using comparison with captured dynamic data such as
wheelset velocity, slip and/or accelerations [18, 19].

5.3.3 CASE STUDY: MODEL-BASED ESTIMATION FOR LOwW
ADHESION DETECTION

Our acknowledgements go to the Technical Strategy Leadership Group
(TSLG — RSSB UK), Transport for London for supporting this work and to
the University of Sheffield as project partners. They also go to DeltaRail for
providing simulation test data and assisting in the generation of the linear
model for use in the model-based estimator.

This initial case study targeted the use of a vehicle model based on a
British class 158 DMU (Deisel Multiple Unit), a small commuter vehicle
with contemporary suspension design. The test subject was a high-fidelity,
non-linear, multi-body simulation of the vehicle running in VAMPIRE to
provide simulated measurement outputs and controllable adhesion
conditions. VAMPIRE is a well-validated specialist rail-vehicle dynamics



modelling software and provided the closest means of obtaining vehicle
dynamic data short of full-scale track testing of a fully instrumented vehicle
with modified adhesion conditions. Using a Model Based Physics (MBP)
simulation is advantageous here as it enables a numerical comparison of the
contact force estimation which is very difficult to obtain in practice. All
data is simulated using non-linear contact modelling assuming interactions
between a 113A Railhead and a P8 wheel. This study used four adhesion
levels that represent differing risk levels of operation to operators (Table
5.6).

TABLE 5.6
Definition of coefficient of friction for operating conditions<d

Coefficient of Friction

-1 Descriptor  comment
0.56 ‘Dry’ No impact on operation
0.32 ‘Wet’ No impact on operation
0.072 ‘Low’ Mitigation by defensive driving
‘Very Little mitigation action possible to reduce
0.038 low’ risk

The VAMPIRE model is subject to a transit along a typical section of
UK track under varying adhesion conditions. The irregularities modelled
are statistically similar to those of a high-speed rail link found in the UK;
sufficient to excite the suspension dynamics across its key dynamic range.
Each simulated test run was conducted with a vehicle speed of 200km/h and
lasts for 60 seconds. Again, the data is collected as if it were measured data
and subject to processing through the model-based estimator. Figure 5.38
shows the result of the contact force estimation for three adhesion
conditions. The figure focuses on a three second time interval to better
observe estimation results.
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FIGURE 5.38 Force/Moment estimation in normal running case study.<J

Figure 5.38 shows that the contact moment on the wheelset is best
estimated by this method, and that the general magnitude of moment
decreases in line with the coefficient of friction. The best results to obtain
an estimate of adhesion 7 was to normalise a 5 second moving RMS of
moment estimation with an equivalent 5 second moving RMS of wheelset
rotational acceleration with the intention of scaling the moment estimation
with an indicator of track irregularity magnitude. These numerical values
are regressed against known experimental data to create a lookup table for

. Figure 5.39 shows two experiments where the known coefficient of



friction reduces from normal (‘Dry’) operation to low levels and the
estimator establishes an estimate of the change in adhesion.
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FIGURE 5.39 Step change in adhesion level during running.<J

A source of inaccuracy in this estimation was identified as the
uncertainty of the linear model used to form the = A matrix in the Kalman
Filter. The model makes linear assumptions about the movement of the
running gear from which the contact forces are estimated. Model
uncertainty due to the complex geometries and non-linear properties of
suspension components means that estimations will be at their greatest error
typically at low adhesion levels. This 1s when the stimulus of the system is
at its smallest due to the reduction in forces acting on the wheelset. To
improve estimation at the critical low adhesion conditions, better models
are required at these operating conditions.

A potential solution to this problem is to use systems identification to
best approximate a linear model of the running gear at low adhesion
conditions, in place of a first principal analysis. The following case study



details results obtained when using a SIMPACK multi-body simulation
model of a D78 Rolling stock unit used in the London commuter network.
SIMPACK 1is a well verified tool used widely in the rail industry for vehicle
studies and is effective at simulating the complex wheel/rail interfaces that
are necessary in this study. Sensor measurements of inertial data are
mimicked using data generated from the simulation. Full details of this
study are reported in [20].

The system description for the Kalman filter is populated by completing
a systems identification exercise using the least squares method (see
Appendix A2.3) for each state variable derivative term defined in  #,. The
variables for the systems identification exercise are output from
experimental data generated from the simulation model. Figure 5.40 shows
an example of verification data for two variables. Typically, the longitudinal
variables outperformed the lateral variables throughout the system.
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The rows of the state description describing the augmented states of
Force and Moment can also be populated using this method. As an MBP
simulation 1s used, the time histories of contact forces can be extracted from
the simulation as variables, and subject to a systems identification process
against the state variables, as with the inertial states. This provides the
estimator with an approximate model of how the contact forces and running
gear dynamics are coupled. The inclusion of this part of the estimator will
lead to better attribution of the estimated augmented states to the system
states in the estimation process. Furthermore, it is also possible to include



the creep as augmented states that in turn can be estimated. Estimating both
creep and creep force allows for a real time formulation of the creep curves
experienced during running, and the subsequent option to use these
estimated properties as lookup references to estimate adhesion from known
or theoretical curves.

Figure 5.41 shows the results of estimating adhesion using only inertial
data. The estimator outputs creep and creep force, which are each then
subject to a 5 second moving RMS. The values of creep and creep force are
then interpolated in a look up table formed from established creep curves to
provide an estimated coefficient of friction.
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FIGURE 5.41 Coefficient of friction estimation using look-up table for u.<l

The results show that the estimator performs a reasonable task of
identifying the operating condition of the vehicle, even if the numerical
values lack absolute accuracy. To enable better identification of low
adhesion conditions, the systems identification to establish a suspension
model was completed using data of similar adhesion conditions so that the
accuracy of estimation output is deliberately biased towards effectiveness at
operating conditions in low adhesion.



5.3.4 CASE STUDY: DATA-DRIVEN (MODEL-FREE) APPROACH TO
LAD (NETWORK RAIL)

This FNN approach presented in [21] is the result of collaborative research
between Loughborough University, The University of Sheffield, and
Hitachi Rail UK, sponsored by Network Rail UK [22]. The intention of the
project was to artificially change the coefficient of friction of a section of
test track, and collect inertial data from a rail vehicle operating over these
changing conditions. Post processing of this data would determine if a
difference in the vehicle dynamics could be observed due to the changing
adhesion, and also if the inertial readings could be used to estimate the
coefficient of friction. This could then be verified if the operating condition
is recorded for each test conducted.

The vehicle used was a Multi-Purpose Vehicle (MPV) owned by
Network Rail that comprises of 2 cars each with a pair of four-wheel
bogies. Only one of the cars was instrumented, and it is shown in Figure
5.42. Instrumentation of the vehicle was carried out by Perpetuum, now part
of Hitachi Rail. The vehicle was instrumented by accelerometers and
potentiometers on all four wheelsets and two bogies. The left and right
axleboxes of the wheelsets were instrumented with 3-axis Dytran 7533A4
accelerometers. Figure 5.42 also shows the fixing of the accelerometers to
the axlebox on a modified keeper plate in a 3D printed housing.
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FIGURE 5.42 MPV and sensor installation on the axlebox and across the
primary suspension.<!

Experimental conditions were created [23] and verified by the use of
adhesion modifiers on an 800m section of a test track at Tuxford, UK, a
Network Rail owned facility. The obtained coefficient of friction in each
test case was measured at select points along the test section to verify the
experimental condition, and all test conditions are summarised in Table 5.7.

TABLE 5.7

Summary of available test cases<]

Speed 16 mph 26 mph 40 mph 60 mph
Straight track

Dry 0.31 0.29 0.31,0.37 0.3,0.34,0.35
FM 0.14,0.17 0.19 0.17 0.16

Wet 0.161 0.19 0.24,0.24 0.27
Detergent  0.18,0.17 0.21 0.17,0.22  0.24
Paper tape  0.16, 0.2 0.07,0.16,0.22 0.1 0.11, 0.19
Curved track

Dry 0.28 0.32 0.31 0.36

FM 0.13,0.26 0.26 0.27 0.27

Wet 0.35,0.23 0.19 0.25 -



Speed 16 mph 26 mph 40 mph 60 mph
Detergent  0.28 0.25, 0.28 0.28,0.32 0.28

A model-based approach to adhesion estimation in this case proved
troublesome as it was difficult to obtain a sufficiently representative linear
model of the rubber-block suspension of the MPV. Instead, as a large
amount of data was collected with known test conditions, it seemed
reasonable that a model-less approach could be taken where a neural
network could be trained on the inertial data to recognise changes in the
coefficient of friction [21]. Options of neural network structures are
available with varying attributes, but the most successful implementation
makes use of a Deep Convoluted Neural Network (DCNN). Instead of
operating on time-domain acceleration signals, a Short-Time Fourier
Transform (STFT) 1s applied to convert them from 1D to 2D signals for
convolution operation. The frequency-domain approach is chosen since it is
more powerful in identifying frequency features and spectral energy
associated with specific friction/adhesion levels. In this case acceleration
measurements from the axleboxes were the primary data inputs to the
network, following some simple filtering before a STFT to obtain the 2D
data.

To protect from over-fitting the experimental data is partitioned into
three sections for training, validation and test. The training and validation
data come from the same test run, but are partitioned by time such that
validation (and subsequent tuning) occurs on data not seen during training.
Complete data sets are reserved for the final stages for test purposes.

The architecture of the DCNN consists of 4 Convolutional Layers (CLs),
denoted as CL1, CL2, CL3, and CL4 respectively, and a Fully Connected
Layer (FCL). This architecture belongs to an end-to-end discriminative
model, where feature extraction and classification are performed
simultaneously. Discriminative models have also been shown to be more
accurate than generative models [24]. The outputs of the CLs are referred to
as Feature Vectors (FVs). Commonly, each of the CLs is followed by a
ReLU and a pooling layer, where the former helps reduce overfitting, and



the latter reduces the dimensions of the FVs and size of the network for
faster training and implementation. Average Pooling Layers (APLs) are
used for pooling, which lead to more consistent estimations. There is also a
dropout layer with a dropout factor of 0.5 between each ReLU and APL
layer to reduce overfitting. The convolution filter head in each CL is 150.
The length of convolution filters is 3; a stride of 1 and the same padding are
employed. The size and stride of the APLs is 2, meaning that the FVs’ sizes
after each APL are halved. The FVs from the final CL are then flattened by
the FCL, which also connects every element of the final FV to a single
neuron, as in an MLP. The STFT inputs are also normalized to [-1, 1] first
using their respective maximum and minimum values for improved
training. The architecture of the MC-DCNN is shown below in Figure 5.43,
where the ReLU layers and APLs are not shown, and .. 1s the estimated

friction coefficient after training.

32 x16 150FVs 150 FVs 150FVs 150 FVs 150 x 4

Tnputs 32x1 16x1 8x1 4x1 nodes
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Input layer CL1 CL2 CL3 CL4 FCL

FIGURE 5.43 Architecture of the MC-DCNN.

The number of convolutional filter heads used decides the number of
features to extract from the previous layer. The consideration is to use a
sufficient number of convolution filters such that all existing features are
extracted from the inputs. However, in addition to increasing network
complexity, using too many filter heads can lead to overfitting, long training
time and poor generalization, especially if the data does not include all



possible running conditions. A higher number is chosen to ensure that this
is not a limiting factor. The number of CLs depends on the hierarchical
relationship between the input and the output, and the number of classes.
After some training and validation studies, it was found that increasing the
number of CLs improves the consistency of the estimation between
different training instances, meaning increased robustness against random
network parameter initializations. For all speed cases, four CLs was found
to be sufficient after some tuning, and adding more layers hugely increased
the training time without improving the training error.

Table 5.8 shows the results of the DCNN against unseen test data across
different speed conditions, and through both straight and curved track
sections.

TABLE 5.8
The average pest, average RMSEs, average MAE, and the SD of MAEs from 10 MC-DCNNs<J
Measurement set 16 mph 26 mph 40 mph 60 mph
Straight track
P 0.17 0.16 0.22 0.3
Average 1 0.247 0.179 0.235 0.304
Average RMSE 0.0774 0.0209 0.0165 0.0083
Average MAE 0.0774 0.0204 0.0164 0.0068
SD (MAE) 0.0125 0.0221 0.0085 0.0037
Curved track
P 0.23 0.25 0.28 0.27
Average [y 0.246 0.259 0.25 0.338
Average RMSE 0.0224 0.0095 0.0287 0.0685
Average MAE 0.0219 0.0094 0.0287 0.0684
SD (MAE) 0.0192 0.0132 0.0041 0.0043

The estimator performs very well across both changing speed and
changing adhesion. Although this method is promising, there is some



consideration to be made about the application to a ‘general’ case of
estimation in that learned systems are only really verified within the bounds
of the training data. For in-service implementation, training data should be
established (through on-track testing or augmented by simulation data) for
much wider operating conditions of adhesion conditions, and include
different track profiles and wear conditions of wheels.
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Appendices

Al STATE-SPACE REPRESENTATION OF DYNAMIC
SYSTEMS

A1l.1 REPRESENTATION OF DYNAMIC SYSTEMS IN CONTINUOUS
TiME

In this section, a state-space representation is derived as the representation
form of the dynamic system for formulating the Kalman filter (KF).

Consider the mechanical system of mass, spring and damper systems
shown in Figure Al.1. The equation of motion is expressed as

- y(t)

k

[

FIGURE Al1.1 Mass, spring and damper mechanical systems.<J

j(t) = —=g(t) — Ly(t) + Lu(t), (AL .



where m is the mass, c¢ 1s the damping coefficient, k£ is the spring constant,
u(t) 1s the force acting on the object (input) and y(¢) is the position of the
object (output).

Now, as state variables, we choose the position and velocity of the object
as follows:

Then, the following first-order simultaneous differential equations are
obtained:

#1(t) = za(t), (A1.2)
a(t) = —Saa(t) — Loy (t) + Lu(t) . (AL3) :

m

Equations (A1.2) and (A1.3) can be expressed in matrix form as follows:

[252] = [_ . ] [Z;Eﬂ | e,
o Ty e %

where z(¢) 1s called the state vector.

To measure the position of an object, the following state quantities need
to be determined:

z(t) = z1(t) (AL.5)

Equation (A1.5) can be expressed in the following matrix form:



In general, a dynamic system can be described as follows:
&(t) = Ax(t) + Bu(t) , (AL.7)
z(t) = Cz(t) , (A1.8)

where

z1(t) uy(t) z1(t) 1(t)

wg(t) U2(t) zZ9 (t) ) ibg(t)

Zn(t) Um () 2(t) Zn(t)

Equations (A1.7) and (A1.8) are called the state-space representation of the
system and are called the state equation and the measurement equation,
respectively. They can also be represented using a block diagram as shown
in Figure A1.2.



State

Input 1 33 (t) / T (t) Measurement

u(t)— B C —=(t)

A

FIGURE A1.2 State space representation.<]

A1.2 REPRESENTATION OF DYNAMIC SYSTEMS IN DISCRETE TIME

Equations (A1.7) and (A1.8) are expressions for dynamic systems in
continuous time. This section describes the representation of the dynamic
system in discrete time.

The equations of state and measurement of a dynamic system in
continuous time are described below.

z(t) = Az(t) + Bu(t) + w(t),
(A1.9)
2(t) = Cz(t) + o(t). (A1.10)

The equation of state in Equation (A1.9) is the addition of system noise
(also called plant or process noise) @(t) to Equation (A1.7). The system
noise represents the inaccuracy of Equation (A1.7). The measurement
Equation (A1.10) is the addition of the sensor noise #(¢) to Equation (A1.8).
Now, it is assumed that  @(t) is white Gaussian noise with zero mean
and a covariance matrix W/(r). It’s also assumed that #(t) 1S white

Gaussian noise with zero mean and covariance matrix V().
Solving the state equation in Equation (A1.9) yields



z(t) = eAltt)g(ty) + / eAt=){ Bu(a) + w(a)}da.

to

(AL.11)

where z(t,) 1s the initial value and e4¢—t) 1s called the state transition matrix
from time ¢, to time ¢. e4t is the matrix exponential function, defined by

E:OO At)F At)? At)?
et = k:o(k? :-H'%*'(z!) ""(3!) +-o, (ALL2)

where I is an n x » identity matrix.
Now, the input  «(¢) is assumed to be constant at ¢, , <t < t,.

u(t) = ’U,(tk_l) tr1 <t <t (A1.13)

The state z(t;) at sampling time ¢, can be obtained by setting ¢ =t, and
ty =ty in Equation (A1.11) as follows:

z(tr) = Fo(tp-1) + Gu(tp-1) + w(te-1) - (Al.14)
For simplicity, the following equation is used here:
z(k) =Fz(k—1)+ Gu(k—1) + w(k — 1). (A1.15)

If the sampling period is written as = (=t —t,_,), the matrices F and G are
described by

F=e4tta) —ed™ — T4 Ar 4+ A2!T2

- + ..., (Al.16)

v

G = / eAY)Bdt = Br+ Agfz +---. (AL.17)
0

The covariance matrix for the system noise w(k — 1) in discrete time is



T 7_2
Q= / eAT-DTY (¢) {eA(T—t)}Tdt = W(t)r + (AW(t)+;4!’(t)A) 4
0

(A1.18)

If the sampling time = is sufficiently small and higher-order terms above 72
can be neglected compared to terms in 7, then

F=1+ At,(A1.19)
G = BT, (A1.20)
Q =W(t)r. (A1.21)
The measurement equation in discrete time can be expressed as
z(k) = Hz(k) + v(k) . (A1.22)

We now compare this with the measurement equation in continuous time in
Equation (A1.8), where H = ¢ and the covariance matrix of v(k) 1s

R="9 (A1.23)

Example 1.1

Consider a mass in one-dimensional motion at a constant velocity. If the
position of the mass is x(¢), the motion of the mass can be expressed as
follows:

i#(t) = @(t) , (A1.24)

where @(t) represents the acceleration disturbance and is white Gaussian

noise with a mean of zero and a variance of g.
The equation of state for the system in continuous time is



o) = o ol Lol * [awo]
(A1.25)
Equation (A1.21) can be expressed as
£(t) = Az(t) + @(t) , (A1.26)

where

“©=[za] A=lo o %0 la0]

Based on Equation (A1.22), the state equation in discrete time is
z(k) =Fz(k—1)+wk—1).(A1.27)
Using Equation (A1.16), the matrix F becomes

1 7

F=e4 = [o 1] . (A1.28)

From Equation (A1.18), the covariance matrix for the system noise w(k — 1)
becomes

(A1.29)

The representation of dynamic systems in discrete time is summarised
below.
The state equation is



z(k) = Fz(k— 1) + Gu(k — 1) + w(k — 1) , (A1.30)

where w(k — 1) 1s white Gaussian noise with a zero mean and a covariance
matrix Q.
The measurement equation is

z(k) = Hz(k) + v(k) , (A1.31)

where v(k) 1s white Gaussian noise with a zero mean and a covariance

matrix R.

Note that, in Equations (A1.26) and (A1.27), F, G and H are expressed
as constant matrices, that is, as time-invariant systems, but they can also be
written as time-invariant systems as follows.

z(k) = F(k—Da(k—1)+ Gk — Du(k — 1) + w(k — 1), (A1.32)

z(k) = H(k)z(k) + v(k). (A1.33)
A2 DISCRETE-TIME KALMAN FILTER

A2.1 PROBABILITY DISTRIBUTION
A2.1.1 Expected Value and Variance

First, consider the case of discrete random variables. The probability that
the random variable X takes z; is defined as

P(X = mz) :p(mi)a (7’ =12,--- an)7 (A2.1)

where

Z;l p(x;) =1.(A2.2)



If the random variable takes continuous values, the following definition is
used:

b
Pla<z <b) = / p(z)dz , (A2.3)

where p(z) is called the probability density function.
The mean value is defined by the following equation:

p=Elel= Y wlw), (A2

1=

where E[z] 1s called the expected value of z and is the value taken by the

random variable weighted by the probability of occurrence.
If the random variable is continuous, the mean value is defined by the
following equation:

p=Elz| = / zp(z)dz . (A2.5)

0. 9]

The variance is also defined as follows for discrete and continuous random
variables, respectively:

= B[] =Y (a - )pa), (A26)

o = E[(w — ,u)z} = / (x — p)’p(z)dz. (A2.7)

(0. 9]

Equation (A2.7) can be written as

o? :E[x2 —2ac,u—|—,u2} = E[wz} —2u? + p? :E[$2] — 2.



(A2.8)

Now consider the case where the random variable is vector-valued. Let
z = [z1,z9,---,z,]" be an n-dimensional random variable vector. In this case,
the mean vector n 1S

Elz] M1
E[z)] 2

= . =1 |- (A2.9)
_E[mn]_ | Hin |

The covariance matrix is also a symmetric matrix (o;; = o) expressed as

2
0'11 . e O1n

S T V.V AT

where
0% = B|(zi — i) (z; — )" | (A2.11)
It can alternatively be expressed as

— Elz], (A2.12)

Z=E|(@-p)(@-p)'| = Blea”] - p”.
(A2.13)

A2.1.2 Normal (Gaussian) Distribution



A probability distribution where the probability density function of the
random variable z is given by

2
1 — J—
p(z) = Wewp[ (§02“) } (A2.14)
1s called a normal distribution or a Gaussian distribution, where p 1s the
mean value of the random variable z and o2 is the variance.

The normal distribution is denoted by ~ N(u,0?). Figure A2.1 shows the
normal distribution for 4 =0 ando?=1,2,4.

p(z)

FIGURE A2.1 Probability density function of the normal distribution.<

For an n-dimensional vector of random variables, the probability density
function 1s expressed by



-1 B O Y A Y N
p(@_@ﬂﬂz‘%mp[ Lz —p)' 5 (2 - p).

(A2.15)

Figure A2.2 shows an example where the random variables are two-
dimensional, T1, Lo, U1 = Ho =0, cr%1 = 032 =1,019 =09 =0.

p(xla '/1/.2)

0.15 ™
0101

005 ¢

FIGURE A2.2 Probability density function with two random variables.<!

A2.1.3 White Noise

The autocorrelation function of the time series z(k) 1s defined by

R(7) = E[z(k)z(k + T)] , (A2.16)



where 1 denotes the time difference.
The time series  z(k) is called white noise when the autocorrelation
function  R(r) becomes

[ a2 (r=0)
R(7) _{ 0 (r0) .(A2.17)

The time series z(k) is uncorrelated when = # 0, because the autocorrelation
function R(7) 1s zero.

A2.2 BAYES’ THEOREM

The probability of event A occurring is defined as P(4), the probability of
event B occurring is P(B) and the probability of events 4 and B occurring

simultaneously is called the simultaneous probability and is defined as
P(A, B) (see Figure A2.3).

Event A Event B

FIGURE A2.3 Events and probability.<]



The probability of event 4 occurring when event B occurs is described as
P(AB) and is called conditional probability and is defined as follows.

P(A/B) = Z52) . (A2.18)

If events 4 and B are independent, then we obtain
P(A,B) = P(A)P(B). (A2.19)

The conditional probability is

P(A/B) = 555, — P(4), (A2.20)

and 1s therefore not affected by event B.
Now, from Equation (A2.18), we obtain

P(A, B) = P(A|B)P(B), (A2.21)
P(B,A) = P(B|A)P(A). (A2.22)

Because P(4, B) = P(B, A) by definition, we have

P(A|B)P(B)

P(B‘A) — P(A)

(A2.23)

Equation (A2.23) is called Bayes’ theorem and is the fundamental theorem
of Bayesian estimation.

If the random variables x and y are continuous vectors, Bayes’ theorem
can be expressed as follows:

p(ly) = THUIHE - o plyle)p(z) - (A2.24)



A2.3 LEAST-SQUARES ESTIMATION METHOD

Consider the problem of estimating the state (here assumed to be constant)
from noisy sensor measurements (see Figure A2.4).

Measurement

[ 3

Number of
measurements
(Time)

=

FIGURE A2.4 Least-squares estimation method.d

Assume that there is a linear relationship between the states  z(1), -

9

z(n) and the measured value  z(i). In this case, the measurement is

carried out m times to obtain the measurement value. It is assumed that each
measurement contains random noise with different values:

z2(1) = Hyyx(1) + -+ - + Hypz(n) + v(1)
. (A2.25)
z(m) = Hypx(1) 4+ - - + Hppz(n) + v(m)

where (i) 1s the noise added to the measured values.
Expressing Equation (A2.25) in matrix form gives



— -
z(m) Ho H | [2(0) v(m)
N —’ - A —— N’
z }_’I T v

z=Hx +v.(A2.26)

~

Now we consider how to find the best estimate z of state x. The error
between the observed value 2 (= Hz) predicted from the best estimate z and
the actual measured value z is

F=2—Hz =[3(1), -, 3m)]", (A2.27)

where z is called the residual.

To determine the best estimate 7 of state x so that the cost function,
which is the sum of the squares of the error (i) (i=1, ---, m) between the
predicted and the actual observed values,

J=%1)%+--- + z(m)?, (A2.28)

1s minimized.
Equation (A2.28) can be rewritten as

J =13z
= (z— Hz)"(z — Hz)
=212 —2THTz — 2T"HZ + 2T HTHZ. (A2.29)

Differentiating Equation (A2.29) by # and equating it to zero yields the best
estimate # as follows:



9 _TH - JTH + 23THTH = 0, (A230)

z=(HTH) 'H"z.(A231)

This method is called the least-squares estimation method.
Example 1.2
The true value of x is measured m times, and the sensor measurements z(1),

2(2),***, 2(m) are obtained. It can be assumed that random sensor noises v(1),
v(2),'*+, v(m) are added to each measured value.

2(1) = x + v(1)

z(m) = x + v(m)
Using matrix notation, we obtain

z(1) 1 v(1)

z(m) 1
- — ~— ——
z H

The best estimate 7 is obtained as



z = (HTH) 'HT>
1

[ 1]\ 2(1) |
= 1 . 1] [1 cen 1]
1 z(m)

[2(1) + -+ - + 2z(m)] . v

In this case, the average of the measured values is the best estimate.

A2.4 WEIGHTED LEAST-SQUARES ESTIMATION METHOD

Next, consider the case where the variance o(i)> values for the noise in the
sensor measurements z(i) differ from each other (see Figure A2.5).

Measurement

L o(1)? (2)? o(m)?

Number of
measurements
(Time)

FIGURE A2.5 Weighted least squares estimation method.<]

For example, when the accuracy of the measurements is high, the noise
variance  o(i)® 1s small, and when the accuracy of the measurements is

low, the noise variance  o(i)* is large. Therefore, consider the estimation



to give less weight to measurements with low accuracy and more weight to
those with high accuracy.

To perform such an estimation, we consider the following evaluation
function, which weights the variance of the noise in Equation (A 2.28):

7 A +...+%.(A2.32)

In this way, less accurate measurements have a lower weight for the cost
function, thus improving the accuracy of the estimation.
By rewriting Equation (A 2.32) using the following equation,

[ 5(1)? 0 |
R=| : ; :diag<a(1)2,---,a(m)2>,
|0 o(m)”)
(A2.33)

the cost function J to be minimized can be expressed as

J=3TR 1z

T

=(2—Hz ) R"'(2— Hz)

=2TR Y2 —2THTR 12— "R 'Hz + 2T HTR 1 Hx (A2.34)

As in the previous section, by differentiating Equation (A2.34) by z and
equating it to zero, obtaining the best estimate z.

9 _TRH 4+ 3THTRH = 0, (A2.35)



z=(HTR'H) 'HTR 'z.(A2.36)

This method is called the weighted least-squares estimation method.

Example 1.3
As in Example 1.2, the true value of x is measured m times to obtain the
sensor measurement values z(1), z(2), ..., z(m). It can be assumed that each
measurement 1S accompanied by a noise (1), v(2), ..., v(m) with different
variance.
)| (1] [e)]
=|il=+] ¢ |
z(m) 1 v(m)
—— ~—— ~——
z H v
where

The best estimate z is obtained from Equation (42.36) as follows:

Z=(HTR'H) 'HTR 'z

m -1
B (Zizl aé)z) (;(11))2 H ;g))z )




In the above equation, if the variance of all noise is the same, the result is
the same as that in Example 1.2.

A2.5 SEQUENTIAL LEAST-SQUARES ESTIMATION METHOD

In the estimation using Equation (A2.36), it is necessary to recalculate
Equation (A2.36) repeatedly for each new measurement, which is very
inefficient when the number of measurements increases. If the method
could be changed to a sequential type, in which the estimates obtained until
then are updated for each new measurement, this would improve the
efficiency of the calculations. This method is called the sequential least-
squares estimation method (see Figure A2.6).

ﬁ(k) _ Hﬁ:(k‘ o 1) Predicted

measurements
Actual
measurements

JVL/L

KLU © A O

Update Update Update

FIGURE A2.6 Sequential least-squares estimation method.<!

Consider modifying Z(k—1) at time k—1 using the difference
between the observed value  Hz(k - 1) predicted from the state estimate
Z(k — 1) and the value actually observed at time &,  z(k).

z(k) = Hz(k) + v(k) , (A2.37)



z(k) =2(k—1) + K(k)|[2(k) — HZ(k — 1)] , (A2.38)

where K(k) is a coefficient matrix called the gain. The measurement noise
v(k) 18 white Gaussian noise with a mean of zero and a covariance matrix R.
Denote the true value as z and the difference between the true value and the
estimated value z(k) (the estimation error) as #(k)[=z — #(k))]. The average
value of the estimation error #(k) can be calculated by the following
equation:

= [I - K(k)H|E[Z(k - 1)] — K(k)Elv(k)]
— [I - K(k)H]E[#(k — 1)] . (A2.39)
The estimation error covariance matrix can also be calculated by
P(k) = E|#(k)a(k)" |

- E[[( I- K(k)H)%(k— 1) — K(k)v(k)][-- -]T]

= [I- K(k)H|B|3(k— )&k - 1)" |[T - K(k)H]"



~[I - K(k)H|E|3(k)o(k)" | K(k)" + K(])E |o(k)o(k)" | K(8)",
(A2.40)

where the estimation error and the noise are uncorrelated.
Note that because E[v(k)%(k — 1)T] =0, E[ﬁc’(k)v(k)ﬂ = 0, we obtain

P(k) = [I — K(k)H]P(k — 1)[I — K(k)H]" + K (k)RK (k)T. (A2.41)

The cost function J(k) that minimises the estimation error can be expressed
as

- E{Tr (%(k)i(k)Tﬂ — TrE [af(k)as(k)T] — TrP(k). (A2.42)

By differentiating the cost function J(k) by K (k) and setting it to zero, we
obtainl

aJ (k)
oK (k)

= —2[I - K(k)H|P(k—1)HT + 2K (k)R = 0. (A2.43)
From Equation (A2.43), the gain K(k) 1s obtained as
K(k)=P(k—1)HTS(k—-1)"",

(A2.44)
where

S(k—1)=HP(k—1)HT + R. (A2.45)



Now, rewriting Equation (A2.41) using Equation (A2.44), we obtain2
P(k)=[I - K(k)H|P(k—1).(A2.46)

From the above, obtain the sequential least-squares estimation algorithm
shown in Figure A2.7.

Initial values
2(0) = Blw(0)]
P(0) = E |{2(0) - 2(0)} {=(0) - 2(0)}"|

d

K(k)=Pk-1)H"Sk-1)"1
S(k—1)=HPk-1)H"+R
&(k) =&k — 1) + K(k) [2(k) — Ha(k —1)]
P(k)=[I - K(k)H|P(k - 1)

1]

z(k)

Measurements

FIGURE A2.7 Sequential least-squares estimation algorithm.<l

Step 1: Set the initial values as

(A2.47)

Step 2: Obtain the measurement value z(k).

z(k) = Hx(k) + v(k) , (A2.48)



where the measurement noise »(k) is white Gaussian with a zero mean and a
covariance matrix R.
Step 3: Update the estimates as

K(k) = P(k—1)HTS(k—1)"", (A2.49)

S(k—1)=HP(k—1)HT + R,
(A2.50)
z(k) =z(k — 1) + K(k) [2(k) — HZ(k — 1)] , (A2.51)
P(k) = [I — K(k)H|P(k — 1) . (A2.52)

Step 4: Repeat Steps 2 and 3 for i=1, 2, -+, m.

Example 1.4

For the problem shown in Example 1.2, we construct a sequential least-
squares estimation algorithm. The sensor measurements can be expressed
by the following equation:

z(k) = Hz(k) + v(k)
where
H=1,

R = E[v(k)ﬂ .

The initial value is given by Equation (A2.47), which gives



Note that because

K(k) = P(k—1)HY[HP(k—1)HT + R]

_ _P(k-1)
— P(k—1)+R ’

P(k) = [I — K(k)H]P(k — 1)
= (1 - K(k))P(k—1),

we obtain

K(k) = 20
The estimate z(k) can be calculated as

z(k) = z(k —1)+K(k)[Z(k)—HfE(k—1)
=2(k—1) + K(k)[2(k) — ( - 1)
)

_ (k-1)P(0)+R ~
kP(0)+R z(k—1)+ kP w2(k) -

When z is known, P(0) =0 and the gain K(k) =0. This shows that the best
estimate 1s z = z(0), because no correction is made by the measurements.

However, if  z is unknown, then  P(0) — o and the best estimate can
be calculated as



If we write the above equation in concrete form, we obtain

3(1) = 2(1)

z(k) = 5 [2(k— 1)+ 2(k)] = £[2(1) + 2(2) + - - - + 2(k)] .

The results show that the average of the observations is the best estimate,
which is consistent with the results in Example 1.2.

A2.6 LINEAR KALMAN FILTER

In this section, the sequential least-squares method derived in the previous
section 1s extended to the KF.

The discrete-time state-space representation of the system can be
expressed as

z(k) =Fz(k—1)+Gu(k—1) +wk—1),
(A2.53)
z(k) = Hz(k) + v(k) , (A2.54)

where z(k), u(k) and z(k) are the state, input and sensor measurements,
respectively; w(k) is the system noise (also called plant noise), which is
white Gaussian noise with a zero mean and a covariance matrix @, and v(k)



1s the sensor noise, with zero mean and white Gaussian noise with a
covariance matrix R.

We define a prior estimate and a posteriori estimate of the state  z(k) at
time k. The prior estimate is an estimate (prediction) based on the measured

values  z(1), ---, z(k—1)up to time  k— 1, and is described as follows:

3(k/k — 1) = E[(z(k)/2(1), -, 2(k — 1)] . (A2.55)

The posterior estimate is based on the measured values z(1), ---, z(k) up to
time k and is written as

2(k/k) = E[(x(k)/2(1),- -, 2(k)] . (A2.56)

This is the estimate to be obtained at time k.

Now consider extending the sequential least-squares estimation
algorithm to work with Equations (A2.55) and (A2.56) and their covariance
matrices. In the sequential least-squares estimation algorithm, the state
estimate and covariance matrix are rewritten before and after the
measurement value  z(k) as follows (see Figure A2.8):

Least-squares method Kalman filter
z(k) z(k)
2(k—1) ' &) z(klk—1) ' @(k|k)
P(k—1) ' P(k) P(klk—1) ' P(k|k)
k k

FIGURE A2.8 Sequential least-squares and Kalman Filter.<!



3k —1) — 3(k|k — 1),
P(k—1) — P(klk—1),
z(k) — z(klk) ,
P(k) — P(k|k) .

This allows the time update, which predicts the state one step after the
measurement z(k — 1) and the state equation, and the measurement update,

which modifies the estimate from the latest observation z(k), as shown in
Figure A2.9.

Time update

2(k—1) [7K§> (k)

Bk —1k—2) | @(k—1k—1) &kk—1)} &(klk)
k—1 k
Measurement update Measurement update

FIGURE A2.9 Time update and measurement update.<

The structure of the sequential estimation by the KF is shown in Figure
A2.10. The time and measurement update algorithms are summarised
below.



ﬁ(k\k B 1) _ H:%(k“c B 1) Predicted Actual

measurements measurements

1|0 z(l 2]1 2(k|k — 1) z(k)

0|0 1|0 :L'(2|1 2(22)  @(klk — 1) & (k|k)

MMM

&(klk —1) = Fa(k — 1|k — 1) + Gu(k —

FIGURE A2.10 Sequential estimation by Kalman filter.<J

e Time update algorithm

The prediction is formulated as

z(klk—1)=Fx(k—1k— 1)+ Gu(k—1).
(A2.57)
The prediction error covariance matrix is
P(klk—1) = FP(k — 1|k — 1)FT + Q. (A2.58)

e Measurement update algorithm

The Kalman gain is
K(k) = P(k|k — 1)HTS(k|k — 1) (A2.59)

The measurement prediction error covariance matrix is given by

1)

Correction

(klk - 1)

I\

&(k|k — 1) + K (k)

(k|k)



S(klk —1) = HP(klk —1)HT + R. (A2.60)

The predicted measured values (measurement predictions) are obtained as

follows:

3(k|lk — 1) = Ha(k|k — 1) . (A2.61)

The estimation equation is

)

(klk — 1) + K(k) [2(k) — 2(k|k — 1)]

z(k|k) =
(klk — 1) + K (k) [2(k) — H3(klk — 1)] .

8) 8

(A2.62)

The estimation error covariance matrix 1s given by3
P(k|k) = [I — K(k)H]|P(k|k — 1) . (A2.63)

The algorithm for the KF is summarised in Figure A2.11.

Initial values

2(0]0) Time update tnput
—_— «— U k — 1

P(0]0) z(klk—1)=F&(k -1k - 1)+ Gu(k — 1) ( )

P(klk—1)=FPk—-1k—-1)FT +Q

Kalman gain
K(k) = P(klk — 1)H(k)TS(k|k —1)~*

S(klk—1)=HP(klk—-1)HT + R Measurements

Measurement update «— z(k)
&(k|k) = &(k|k — 1) + K (k) [2(k) — Ha(k|k — 1)]
P(klk) = [I - K(k)H] P(k|k — 1)

FIGURE A2.11 Kalman filter algorithm.<



A2.7 EXTENDED KALMAN FILTER

The previous section describes the KF when the equations for the state and
observation are linear. This section describes the extended KF that is
applied when they are non-linear. The extended KF is historically old and
easy to understand. The non-linear state equation and measurement
equation for a discrete-time system are described in the following
equations:

(A2.65)

where z(k), u(k) and 2(k) are the state, input and sensor measurements,
respectively; w(k —1) 1s the system noise, which is white Gaussian noise
with a zero mean and a covariance matrix Q; v(k) is the sensor noise with a
zero mean and white Gaussian noise with a covariance matrix R, and f[-] and
h[-] represent non-linear functions.

With a Taylor expansion around the estimates — z(k—1) =z(k — 1|k — 1)
and  w(k—1) =0 in Equation (A2.64), and terms above the second-order

term are assumed to be negligibly small, we obtain the linear equation of
state as



z(k) = f[2(k — 1|k — 1), u(k — 1),0]

ﬁ — — 7 — _
+{6w}x(k—1):’:ﬁ(k\k—l)[x(k 1) —z(k — 1k 1)}

0
i k2 I
= flz(k— 1k —1),u(k — 1),0]
+F(k—1)|z(k—1) —Z(k— 1k —1)] + L(k — Dw(k — 1)
= F(k—1)z(k—1)+ f|Z(k — 1|k — 1), u(k — 1),0]
— F(k—1)Z(k—1k—1) + L(k — Dw(k — 1)
= F(k— Da(k— 1)+ a(k — 1) + @k — 1).

w(k—1)

(A2.66)
The known signal @(k — 1) and the system noise @(k — 1) can be expressed as

u(k—1) = flz(k— 1|k —1),u(k —1),0] — F(k— 1)z(k — 1|k — 1),
(A2.67)

@k —1) = Lk — Dw(k — 1) . (A2.68)

where F(k —1) and L(k — 1) are Jacobian matrices.
For example, taking F(k — 1) as an example, if the dimension of the state z(k)
1s n-dimensional, F(k — 1) can be written as

of; ofy o of:
0z1(k—1) Oza(k—1) 0z, (k—1)
_ _of _
F(k o 1) — oz(k-1) — . . .
Ofn Ofn Ofn
| Oz1(k—1) Ozs(k—1) o 0z, (k—1)

(A2.69)



Because w(k—1) has a zero mean and the covariance matrix is @, from
Equation (A2.68), @w(k—1) has a zero mean and the covariance matrix is
L(k—1)QL(k —1)T.

However, if the right-hand side of Equation (A2.65) is expanded using
the Taylor method around the predicted values z(k) =z(klk—1) and

v(k) = 0, and omitting terms above the quadratic term, assuming that they

are negregibly small, the following linear measurement equation is
obtained:

2(k) = h[B(klk —1),0] + [55] s [2(k) — B(k[k — 1))
h
= h[2(k|k — 1),0] + H(k) [z(k) — 2(k|k — 1)] + M(k)v(k)
[

2(klk —1),0] — H(k)2(k|k — 1)] + M(k)v(k)
)

(A2.70)

where the known signal y(k) and the sensor noise #(k) can be expressed,

respectively, as
y(k) = h[2(k|k —1),0] — H(k)Z(klk — 1)],

(A2.71)

(A2.72)

where H(k) and M (k) are Jacobian matrices.



Taking H(k) as an example, if the dimension of the measured value z(k) is m-
dimensional and the dimension of the state z(k) is n-dimensional, H(k) can
be written as

Ohy Ohy Oh1 T

oxi(k)  Oy(k) 0., (k)
H(k) = af:glk) = : : :
Ohm Ohum Ohum,

| 0z1(k)  Ozy(k) Oz, (k)

(A2.73)
Because v(k) has a zero mean and the covariance matrix is R, from Equation

(A2.72), #(k) has a zero mean and the covariance matrix is M(k)RM(k)”.
The linearized equation of state in Equation (A2.66) and the
measurement equation in Equation (A2.70) can be summarized as

z(k)=F(k—-1Dzx(k—1)+uk—1)+wk-1),
(A2.74)
z(k) = H(k)x(k) + y(k) + v(k) . (A2.75)

By applying the linear KF described in Section A2.6 to the above equation,
the time update algorithm and measurement update algorithm can be
obtained as shown below.

e Time update algorithm

The prediction is made as follows:
z(klk—1) = f[&:\(k — 1k —1),u(k — 1),0].

(A2.76)
The prediction error covariance matrix is

DILIL. 1\ _ /1. 1\D/L. 1. 1\ov/t. N\T \ rr. 1\nrr. 1\1
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(A2.77)

e Measurement update algorithm

The Kalman gain is
K(k) = P(k|lk —1)H (k)" S(k|k —1)"".

(A2.78)
The measurement prediction error covariance matrix is given by

S(k|lk — 1) = H(k)P(k|k — 1)H (k)" + M(k)RM(k)".

(A2.79)
The estimates are obtained as follows:

B(k|k) = 3(klk — 1) + K(k) [2(k) — h[2(k|k — 1),0]].

(A2.80)
The estimation error covariance matrix 1is

P(k|k) = [I — K(k)H (k)] P(k|k — 1) .

(A2.81)

A3 CONTINUOUS-TIME KALMAN FILTER

The equations of state and measurement of a dynamic system in continuous
time are described below.

&(t) = Az(t) + Bu(t) + w(t) ,

(A3.1)



2(t) = Cz(t) + 9(t) , (A3.2)

where @(t) 1s white Gaussian noise with a mean of zero and a covariance
matrix W(¢) and #(t) is white Gaussian noise with a mean of zero and a
covariance matrix V(¢). It’s assumed that @(¢) and #(¢) are uncorrelated.

Euler’s approximation for Equations (A1.15) and (A1.19), when the
sampling period 7 1s small, gives

(k) = I+ Ar)x(k—1)+ Bru(k— 1)+ w(k—1),
(A3.3)
2(k) = Cx(k) + v(k) , (A3.4)

where w(k) 1s the system noise, which is white Gaussian noise with a zero
mean and a covariance matrix Wr and v(k) is the sensor noise, with a zero
mean and white Gaussian with covariance matrix v/r (see Section A1.2).
Equations (A2.58), (A2.59) and (A2.63) become

P(klk—1) = (I + A7)P(k— 1|k —1)(I + A")T + W,

(A3.5)

K(k) = P(klk — 1)CT[CP(k|k — 1)CT + ¥] 7,

(A3.6)
P(k|k) = [I — K(k)C|P(k|k — 1) . (A3.7)
From Equation (A3.6), we obtain
LK (k) = P(k|k — 1)CT[CP(k|k — 1)CTr + V] .

(A3.8)



When the limit is - — 0, we obtain

limL K (k) = P(k|k — 1)CTV L.

=07

(A3.9)
The prediction error covariance matrix can be expressed as

P(k+1|k) = (I + A7)P(k|k)(I + A")T + W
= P(k|k) + [AP(k|k) + P(k|k)AT + W]t . (A3.10)
Substituting Equation (A3.7) into Equation (A3.10), we obtain
Pk+1lk)=(I—- K(k)C)P(klk — 1)+

[A(I — K(k)C)P(klk — 1) + (I — K(k)C)P(klk — 1)AT + W]r.

(A3.11)
Thus,
P(k+1|k)—P(k|k—1) :
= [AP(k|k — 1) + P(k|k — 1) AT + W — AK(k)CP(k|k — 1)
—K(k)CP(k|k — 1)AT] — LK (k)CP(k|k — 1). .
(A3.12)

Prediction error covariance matrix P(t) satisfies P(kr) = P(k|k — 1). When the
limit is = — 0, we obtain

P(t) = AP(t) + P(t)AT — P(t)CTV-1CP(t) + W.

(A3.13)
In the above formulation, Equation (A3.9) was applied. Equation (43.13) is
called a matrix Riccati differential equation.



The solution of the Equation  (43.13) tends to a bounded steady-state
value if lim P(t) = P is bounded. In this case, because  P(t) — 0 for large

t, we obtain the continuous algebraic Riccati equation.
AP+ PAT — PCTV-ICP+W =0.

(A3.14)
The prediction equation can be written as

F(k|k — 1) = (I + A7)&(k — 1]k — 1) + Bru(k — 1) .

(A3.15)
The estimation equation can be obtained using Equation (A3.15) as

2(k|k) = 2(k|k — 1) + K (k) [2(k) — C2(k|k — 1)]
= (I + A7)Z(k — 1|k — 1) + Bru(k — 1)
+ K(k)|z(k) — C(I + Ar)Z(k — 1|k — 1) — CBru(k — 1)] . (A3.16)

Thus,

B(k|k)—B(k—1]k=1) _ AZ(k— 1|k — 1) + Bu(k — 1) -

T

+LK(k)[2(t) — Cz(k|k — 1) — C(Az(k — 1|k — 1) + Bu(k — 1))7] .

(A3.17)
In Equation (A3.17), #z(t) satisfies #(kr) = #(k|k). In the limit as r — 0, we
obtain
©(t) = AZ(t) + Bu(t) + P(t)CTV 1 [z(t) — Cz(t)] .
(A3.18)

e Summary of continuous-time Kalman filter



The state and measurement equations are
&(t) = Ax(t) + Bu(t) + w(t) ,
(A3.19)
2(t) = Cx(t) + @(t) , (A3.20)

where @(t) 1s the system noise, which is white Gaussian noise with a zero
mean and a covariance matrix W, and @(t) is the sensor noise, with a zero
mean and white Gaussian with covariance matrix V. It’s assumed that (t)
and 4(t) are uncorrelated (i.e., E[@(t)5(t)] = 0).

The estimation error covariance is

P(t) = AP(t) + P(t)AT — P(t)CTV1CP(t) + W,

(A3.21)
or

P(t) = AP(t) + P(t)AT — K(t)RK(t)T + W.

(A3.22)
The Kalman gain is

K(t)=P@t)CTv1.

(A3.23)
The estimation equation is

z(t) = AZ(t) + Bu(t) + K(t)[2(t) — CZ(t)] .

(A3.24)
Note that if @(t) and #(t) are correlated, Efw(t)s(t)] = N, and the following

Kalman gain and estimation error covariance equations are used:



K(t) = (P)CT + N)V 1, (A3.25)
P(t) = AP(t) + P(t)AT + W — (P(t)CT + N)V1(P(#)CT + N)".

(A3.26)

P(t) =0 1f the solution of the Riccati Equation (43.21) tends to a bounded
steady-state value P for large . In this case, we can obtain the steady-state
continuous-time KF.

e Steady-state continuous-time Kalman filter

The estimation error covariance is
AP + PAT — PCTV-ICP+W =0,

(A3.27)
The Kalman gain is

K=PCTv-1,

(A3.28)
The estimation equation is

#(t) = AZ(t) + Bu(t) + K |2(t) — CZ(t)] .

(A3.29)

A4 STATE-SPACE MODELLING OF VEHICLE DYNAMICS
USING THE NEWMARK METHOD

Time-series analysis problems, such as vehicle dynamics simulation,
require time integration of the equations of motion. This method is based on
differential equations and is used to obtain the time history response of the
vehicle through a large number of iterations. Common numerical
integration methods include the Euler and Runge—Kutta methods.



However, these methods do not include acceleration as a state quantity in
the first-order differential equations. This means that the velocity must be
differentiated to obtain the car body acceleration when track irregularity is
given as an input.

Therefore, it is better to use the Newmark g method of second-order
differential equations when the vehicle model is represented by MCK form
equations and acceleration is treated as a state quantity. The Newmark 3
method also has a damping effect that removes high-frequency components,
thus preventing divergence of the solution.

The Newmark B method for second-order differential forms is
therefore used as a time integration method. The acceleration  Z, velocity

Z and displacement  z are considered to divide the time into small
time periods t as shown in Figure A4.1.
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FIGURE A4.1 Newmark f method.d
The equation of motion at time k is expressed as
MZ(k) + CZ(k) + K(k) = Di(k) + Er(k).

(A4.1)
If the acceleration is assumed to vary linearly from time k to k41, the

acceleration Z, at time 7 1s



Gy =Z(k)+ 1 [z(k +1) - Z(k)}.

(A4.2)
The velocity z. and the displacement z, are obtained by integrating the

above equation with respect to » as follows:

Zy = Z(k) + Z(k)n+ & [Z(k +1) - Z(k)} 72 (A43)

Zy = Z(k) + Z(k)n+ S Z(k)n? + 3= | Z(k + 1) = Z(k)|n?
(Ad.4)
where n = . Because Z, = Z(k + 1), Z, = Z(k+1) and Z, = Z(k + 1), we obtain

Z(k+1) = Z(k) + 7| Z(k) + Z(k + 1)),
(A4.5)
Z(k+1) = Z(k) +7Z(k) + 572Z(k) + s 72Z(k+ 1) . (A46) |

The Newmark £ method assumes that the velocity Z(k + 1) and displacement
Z(k+1) at time k+1 are given by the following equations, with g
representing the change in acceleration within the time interval:

Z(k+1) = Z(k) + %T[Z(k) + Z(k + 1)} , (A4.7)

Z(k+1)=Z(k) +7Z(k) + (+ - B)T2Z(k) + Br?Z(k+1). .

(A4.8)
Substituting Equations (A4.5) and (A4.8) into Equation (A4.1) at time & + 1
and solving for the acceleration vector Z(k + 1) yields

Z(k+1) = [M+ L7C + r2K] ' [Di(k+1) + Er(k + 1)
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(A4.9)
When Equation (A4.9) is calculated, the external forces, displacements,
velocities and accelerations at time & have already been determined, so all
the right-side terms are known values. Therefore, the acceleration at time
k + 1 1s obtained and the future response can be calculated sequentially.
Discretising Equation (A4.1) with a sampling period 7 using the
Newmark B method yields the following state and measurement
equations:

z(k) = Fz(k — 1) + Gu(k — 1) + w(k — 1) , (A4.10)
z(k) = H(k) + v(k) .

(A4.11)
where z(k) 1s the state vector, w(k) 1s the input vector, z(k) is the
measurement, w(k — 1) 1s the system noise and »(k) is the sensor noise. Also,
F is the state transition matrix, G 1s the input matrix and H is the
measurement matrix.

The state transition matrix F and the input matrix G can be
obtained as

F=A"B

(A4.12)
G = A1C, (A4.13)

where



A=| 0 I -Ir,
K c M
T -Ar
B= 0 I 1|,
0 0 0
0 0
C=10 0
E D

where I is the identity matrix.

NOTES

1. Use 0Tr(ABAT)/0A = 2AB, where B is a symmetric matrix.<l

2. Use the matrix inversion lemma, (4 + BC)1 = A-1 — A"1B(I + CA~1B)
-1C4A-1.4

3. It also can be denoted as P(k|k) = P(k|k — 1) — K(k)S(k|k — 1)K (k)*.<
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